超级电容器充电器平衡有关探讨

超级电容器充电器平衡有关探讨,第1张

       背景

  凌力尔特公司 (Linear Technology CorporaTIon) 推出两节超级电容器充电器系列的最新产品 LTC4425,该器件采用具热量限制的线性恒定电流 - 恒定电压 (CC-CV) 架构,从锂离子/聚合物电池USB 端口或其它 2.7V 至 5.5V 的电流受限电源,将两节串联的超级电容器充电至可编程的输出电压。

  LTC4425 具有两种运行模式:充电电流曲线 (典型) 模式和 LDO 模式。在充电电流曲线模式时,该器件将超级电容组的顶端充电至输入电压 VIN,所用的充电电流与输入至输出电压之差的变化相反,以防止产生过大的热量。LDO 模式将超级电容器组充电至外部设定的输出电压,所用充电电流是固定的,而且也是外部可编程的。充电电流可用电阻器编程至高达 2A (峰值为 3A),而且每个电容器都通过内部并联 (可选 2.45V/2.7V) 而受到保护,以防过压。LTC4425 内置的电流受限理想二极管具有极低的 50mΩ 导通电阻,以防止 VIN 向后驱动,从而使该器件非常适用于多种大峰值功率电池和 USB 供电的设备、工业 PDA、便携式仪表和监视设备、功率计、超级电容器备份电路以及 PC 卡/USB 调制解调器。

表 1:超级电容器、普通电容器及电池的比较

超级电容器充电器平衡有关探讨,第2张

  超级电容器(supercapacitor,ultracapacitor),又叫双电层电容器(Electrical Doule-Layer Capacitor)、电化学电容器(Electrochemcial Capacitor, EC), 黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。

    小结 - 超级电容器与电池的比较:

  电池:

  高能量密度

  适度的功率密度

  在低温时具有大的等效串联电阻 (ESR)

  超级电容器:

  适度的能量密度

  高功率密度

  低 ESR (甚至在低温时)

  (从 -20°C 增至 25°C 时约提高 2 倍)

  超级电容器的限制:

  每节最大值限制为 2.5V 或 2.75V

  在叠置式应用中必须补偿漏电流之差

  在大的充电电压和高温时,寿命缩短得更快

  较早一代两节超级电容器充电器是为用 3.3V、3 节 AA 或锂离子/聚合物电池实现小电流充电而设计的,因为这些 IC 采用升压型拓扑。不过,超级电容器技术的改进已经使市场扩大了,产生了很多未必局限在消费电子产品领域的中到较大电流的应用。主要应用包括固态盘驱动器和海量存储备份系统、工业 PDA 和便利易用的终端等大电流便携式电子设备、数据记录仪、仪表、医疗设备、以及各种“谨守最后一刻”的工业应用 。

  超级电容器充电器的设计挑战

  超级电容器有很多优点,不过,当两个或更多电容器串联叠置时,就给设计师带来了诸如容量平衡、充电时电容器过压损坏、吸取过大电流、大占板面积/解决方案等问题。如果需要频繁的大峰值功率突发,那么也许需要较大的充电电流。此外,很多充电电源也许是电流受限的,例如,在电池缓冲器应用中或在 USB/PCCARD 环境中。就空间受限、较大功率的便携式电子设备而言,应对这些情况至关重要。

  使串联连接的超级电容器达到容量平衡,可确保每节电容器上的电压近似相等,而超级电容器如果缺乏容量平衡,可能会导致过压损坏。就小电流应用而言,充电泵采用给每节电容器配一个平衡电阻器的外部电路,这是一种不算昂贵而又可解决这个问题的办法。正如下面说明的那样,平衡电阻器的值将主要取决于电容器的漏电流。但是如果串联电容器之间的漏电流失配,那么电容器可能一开始再充电就会过压,除非设计师选择可在每个电容器上提供比电容器漏电流本身大得多的负载电流的平衡电阻器。平衡电阻器导致不必要的成份和永久性放电电流,加重了应用电路的负担。如果失配的电容器以大电流充电,它们也不为每节电容器提供过压保护。

  就中到较大功率应用而言,另一个可解决超级电容器充电问题而且不算昂贵的方法是,采用一个电流受限的开关加分立器件和外部无源组件。采用这种方法时,电流受限的开关提供了充电电流和电流限制,同时电压基准和比较器 IC 提供电压箝位,最后,具平衡电阻器的运放实现超级电容器的容量平衡。然而,镇流电阻器的值越低,静态电流越高,电池运行时间越短,显然的好处是节省了费用。不过,这种解决方案实现起来非常笨重,而且性能充其量也就是略微好一点。

  上述满足超级电容器充电器 IC 设计限制的任何解决方案都必须与一个大电流充电器相结合,以用于具自动容量平衡和电压箝位的两节串联超级电容器。因此,凌力尔特公司开发了一款面向中到大功率应用的简单但先进的单片超级电容器充电器 IC,该 IC 无需电感器、无需平衡电阻器、有各种工作模式并具有低静态电流。

  一种简单的解决方案

  LTC4425 的自动能量平衡功能保持两节超级电容器有相等的电压,从而无需用于平衡的电阻器,同时保护每节超级电容器免受过压损坏,并最大限度地减少电容器的漏电流。当输出电压处于稳定状态时,该 IC 以非常低的 20uA 静态电流运行,而在停机时仅从 VIN 或 VOUT (视哪一个电压较高) 吸取 2uA 电流。基本充电电路仅需要 6 个外部组件,而且是高度紧凑,采用占板面积为 9mm2 的纤巧封装以及有引线的封装。其它关键特点包括一个 VIN 电源故障指示器以及通过 PROG 引脚连续监视 VIN 至 VOUT 的电流。其它保护功能包括电流和热量限制,该限制可在温度过高的情况下降低充电电流。

  LTC4425 是凌力尔特的两节超级电容器充电器系列的新器件,用于在便携式和数据存储应用中满足大峰值功率、数据备份和“谨守最后一刻” 应用的需求。该器件采用具热量限制的线性恒定电流、恒定电压架构,用锂离子/聚合物电池、USB 端口或 2.7V 至 5.5V 电流受限电源将两节串联的超级电容器充电至可编程的输出电压。LTC4425 有两种工作模式:充电电流曲线 (通常) 模式和 LDO 模式。充电电流可用电阻器编程至 2A (3A 峰值),而且每个电容器都受到内部分路器保护以免过压损坏 。该 IC 内置的电流受限的理想二极管具有极低的 50mΩ 导通电阻,以防止 VIN 向后驱动,并使该器件适合于多种大峰值功率电池及 USB 供电设备、工业 PDA、便携式仪表和监视设备、功率计、超级电容器备份电路以及 PC 卡/USB 调制解调器。

  LTC4425 采用两种紧凑、耐热增强型封装:12 引线、扁平 (高度仅为 0.75mm) 3mm x 3mm DFN 封装;12 引线 MSOP 封装。该器件在 -40°C 至 125°C 结温范围内工作。

超级电容器充电器平衡有关探讨,未标题-1 拷贝.jpg,第3张 

图 1:LTC4425 方框图/应用电路

  

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2671734.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-14
下一篇 2022-08-14

发表评论

登录后才能评论

评论列表(0条)