半导体工艺的进步,使芯片的集成规模越来越大,芯片的时钟频率越来越高,导致信号的上升/下降时间变短。当时钟频率超过50 MHz时,PCB的信号走线必须以传输线考虑。
1 信号完整性概述信号完整性是指信号在电路中以正确的时序和电压做出响应的能力。反之,如果信号在电路中不能以正确的时序和电压电平做出响应,就意味着出现了信号完整性问题。反射和串扰是导致信号完整性问题的比较普遍的因素[1]。
反射是传输线上的回波。如果传输线上阻抗不连续,就会引起信号的反射。反射信号分量的大小主要由反射系数决定[2]。反射系数的计算如式(1):
其中,Z0是传输线的特征阻抗,Zt是导致不连续的阻抗。
传输线的特征阻抗Z0定义为传输线上任意点处电压与电流的比值。在PCB设计中,传输线主要考虑微带线和带状线两种。因此,在计算特征阻抗时应该根据相应的传输线类型去近似计算[3]。微带线的特征阻抗计算公式如式(2):
其中,W(mm)为导体宽度,T(mm)为导体厚度,H(mm)为介电体厚度,εr为电路板材料的介电常数。
串扰是指当信号在传输线上传播时,由于电磁场的相互耦合而在相邻信号线上产生的不期望噪声电压干扰信号,即不同传输线之间的能量耦合。如图1所示。
串扰是互容Cm和互感Lm联合作用的结果。通常定义被干扰传输线接近驱动器一端的串扰为近端串扰(也称后向串扰),被干扰传输线远离驱动器一端的串扰为远端串扰(也称前向串扰)。
互感即感性耦合,是由已驱动的传输线上电流变化产生的磁场在没有被驱动的传输线上引起感应电压从而导致的电磁干扰。互感Lm的幅值可以通过式(4)计算:
2 信号完整性的解决办法
2.1 反射的解决措施
传输线上的反射会对数字系统的性能造成严重的负面影响。因此,必须采取有效措施对反射进行抑制。根据反射产生的原因,本质上有三种办法可以减小反射的影响:(1)降低系统频率;(2)缩短PCB走线;(3)在传输线两端分别端接一个与传输线特征阻抗相匹配的阻抗,以消除反射。相比之下,只有第三种方法是比较合理的。
采用阻抗匹配的办法主要有两个策略:(1)在负载端进行匹配,即并联端接匹配;(2)在信号源端进行匹配,即串联端接匹配。从系统设计角度看,应优先选择策略(1),因为它在信号能量返回源端之前就消除了反射,即消除一次反射,可以减小噪声、电磁干扰(EMI)以及射频干扰(RFI)。策略(2)实现比较简单,在实践中也得到广泛应用[7]。
2.2 串扰的解决措施
串扰是由多种因素综合作用的结果。在PCB设计中完全消除串扰是不可能的,只能采取有效措施最大限度地抑制它,只要把串扰抑制在噪声允许范围内既可。通过对串扰产生的原因分析,在PCB设计时可以采取以下措施抑制串扰:在空间足够大的情况下,可以尽量增加布线之间的距离;尽量减少相邻网络之间布线的平行长度;相邻两层之间布线应该采取垂直布线,以减少相邻层间串扰;可以在两线之间插入地线,或者采用布地线屏蔽关键的信号线[8,9]。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)