1、引言
现实的生活和实验中,常常要用到各种各样的电源,电压要求多样。如何设计一个电压稳定,输出电压精度高,并且调节范围大的电压源,成了电子技术应用的热点。在市面上,各种电源产品各式各样,有可调节的和固定的。但是普遍存在一些问题,如转换效率低,功耗大,输出精度不高,可调节范围过小,不能满足特定电压的要求,输出不够稳定,纹波电流过大,并且普遍采用可调电阻器调节, *** 作难度大,易磨损老化。
针对以上问题,本文采用基于KA3525 PWM控制芯片的不对称半桥式功率变换器,并采用16位凌阳单片机作为数控核心,通过其内置的D/A输出调制PWM,提高了电源的输出精度和效率,并且方便使用者 *** 作,实现了基于单片机的数控开关电源。
2、基于单片机的数控开关电源系统组成
本数控开关电源,采用凌阳单片机实现对基于PWM控制的不对称半桥式功率变换器的数字控制,实现直流输出电压0V~40V设定和步进值为1连续调整,最大输出电流为2A。同时实现了对输出电压和输出电流的显示等功能。系统框图如图1所示。系统主要包括: PWM控制的开关电源模拟电路部分和凌阳单片机组成的数控部分。
图1 基于单片机的数控开关电源设计系统框图
3、基于PWM控制的开关电源设计
PWM控制的开关电源电路原理如图2所示。主要包括EMI滤波电路、整流滤波电路、功率变换电路、驱动电路、输出电路、稳压电路、过流保护电路以及辅助电源电路等。
图2 PWM控制的开关电源原理图
3.1 EMI滤波电路
EMI滤波器如图3所示电路。该滤波器有两个输入端、两个输出端和一个接地端。电路包括快速保险丝F1,泄放电阻R1,共模电感L1、L2,滤波电容C1、C2、C8、C9。泄放电阻R1可将C1上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端不带电,保证使用的安全性。共模电感L1-1、L1-2对差模干扰不起作用,对共模信号呈现很大的感抗。C1、C9主要用来抑制差模干扰。C2、C8跨接在输出端,经过分压后接地,能有效的抑制共模干扰。
图3 EMI滤波电路
3.2整流滤波电路
常用整流电路有半波、全波、桥式、倍压整流等形式。本文采用桥式整流电路,电路如图4所示。图中 C3、C10两个电容分别用于滤除整流后的高低频成分。
图4 整流滤波电路
3.3 功率变换电路
功率变换电路采用不对称半桥功率变换器,如图5所示。图5(a)所示电路开关管M1导通、M2截止,电容C4放电。图5(b)所示电路开关管M2导通、M1截止时,电容C4充电。图中R1、R2、R6、R7在开关管关断时为泄放电阻,用来泄放开关管结电容电压。C4为储能电容,电容容量不能低于2μF,否则会降低系统带载能力。
(a)
(b)
图5 不对称半桥功率变换器电流流向图
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)