功耗限制条件下噪声最优化的低噪声放大器的设计

功耗限制条件下噪声最优化的低噪声放大器的设计,第1张

在无线射频接收机中,射频信号要经过诸如滤波器、低噪声放大器及中频放大器等单元模块进行传输。由于每个单元都有固有噪声,从而造成输出信噪比变差。采用多级级联的系统,前面几级的噪声系数对系统影响最大。为了降低整个系统的噪声系数,必须降低第一、二级的噪声系数并适当提高它们的功率增益,以降低后面各级的噪声对系统的影响[1]。低噪声放大器LNA(L0W-Noise Amplifier)作为无线射频接收机最前端的关键部件,要求:(1)噪声最小,同时又要求具有一定的增益。(2)要求它有足够大的线性范围。(3)要求它与输入和输出端口有良好的匹配,以达到最大功率传输或者最小噪声系数,而这两者又很难同时达到,需要选择一个折衷方案。(4)要求它应具有一定的选频功能,以抑制带外和镜像频率的干扰。基于低噪声放大器的上述四方面要求,本文从功耗限制下的噪声最优化、阻抗匹配及小信号增益方面出发,详细讨论低噪声放大器的设计方法,并采用0.25μmCMOS工艺设计一种工作在2.4GHz频率下、可应用于蓝牙系统收发器的全集成的低噪声放大器。

1 电路分析与设计

采用电感源极负反馈、单端输入的基本电路形式[2-3]实现的低噪声放大器(LNA)如图1所示。图中,M1、M2和LS组成电感负反馈共源共栅casocode放大电路,以获得高隔离度、低噪声系数和良好的输入阻抗匹配。在输入回路中,Lg1、Lg2与M1的Cgs1及Ls。谐振在2.4GHz,并与输入端50=Ω阻抗相匹配,Cb1为输入端的隔直电容。在输出回路中,Lt与M2漏极的等效电容谐振在2.4GHz。M3、Rref和Rbias组成偏置电路,调节Rref的大小可控制电路直流工作点和静态功耗。M1栅极的偏置电压主要由Rref和M3决定,而Rbias可以进行微调。

 

功耗限制条件下噪声最优化的低噪声放大器的设计, 基于功耗限制的CMOS低曝声放大器最优化设计,第2张

 

1.1 功耗限制下的噪声最优化

主放大管M1对电路的噪声贡献最大,主要表现为沟道热噪声和栅感应噪声。根据噪声理论[4-5],沟道宽度W和静态电流越大,噪声越小,但实际的设计必须考虑功耗的限制,不可能用增大功耗的办法来减小噪声。本设计的功耗要求小于15mW。下面以此为约束条件推导出如何选择M1的尺寸以获得最优噪声。

系统噪声系数的近似表达式为:

 

功耗限制条件下噪声最优化的低噪声放大器的设计, 基于功耗限制的CMOS低曝声放大器最优化设计,第3张

 

式中,γ、δ分别为MOS管沟道热噪声系数和感应栅噪声系数,c为这两种噪声之间的相关系数(它们的取值由工艺决定),ω0是谐振频率,υsat、εsat分别表示电子的饱和速度及速度饱和时的电场强度,Rs为50Ω信号源阻抗,PD为电路功耗,Po为输出功率,Vdd为电源电压,Vod为输出电压的大小。

由Charter公司0.25μmCMOS RF。工艺可以确定M1可取的最小沟道长度L≌0.241μm,电子饱和速度υsat=76090m/s,电子的有效迁移率μeff=0.03932m2/(υs),速度饱和电场强度为
 

功耗限制条件下噪声最优化的低噪声放大器的设计, 基于功耗限制的CMOS低曝声放大器最优化设计,第4张

噪声系数F与M1尺寸选取有着以下密切关系:

 

功耗限制条件下噪声最优化的低噪声放大器的设计, 基于功耗限制的CMOS低曝声放大器最优化设计,第5张

功耗限制条件下噪声最优化的低噪声放大器的设计, 基于功耗限制的CMOS低曝声放大器最优化设计,第6张


式中,QL为输人谐振同路的品质因子,Cgs为MOS管栅源之间的电容,Cpx为MOS管栅氧化层电容密度。由公式(3)、(4)、(5)、(6)、(7)可得:

功耗限制条件下噪声最优化的低噪声放大器的设计, 基于功耗限制的CMOS低曝声放大器最优化设计,第7张

对于每一个功耗值,都对应一个最佳的Ql,opt值,使该功耗下的噪声系数,最小。应用Matlab数学软件分析得到在15mW的功耗限制下取得最小噪声时的QL,opt为9.2。代人下式可汁算出M1的沟道宽度为:

功耗限制条件下噪声最优化的低噪声放大器的设计, 基于功耗限制的CMOS低曝声放大器最优化设计,第8张

本设计中M2的沟道宽度和长度同M1一致,也取为Wm2≌160μm,L≌0.24μm。

1.2 阻抗匹配[6]

低噪声放大器的输入阻抗可写为:

功耗限制条件下噪声最优化的低噪声放大器的设计, 基于功耗限制的CMOS低曝声放大器最优化设计,第9张

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2705262.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-16
下一篇 2022-08-16

发表评论

登录后才能评论

评论列表(0条)

保存