1 引言
不同的应用领域触摸屏的设计方式也各不相同,一般有以下三种:⑴应用触摸屏模块。触摸屏模块提供标准的硬件接口与应用系统(一般为PC或X86架构的工控机)相连,安装驱动程序后即可工作,基本无需开发;⑵扩展触摸屏控制器。这是嵌入式系统中设计触摸屏普遍使用的方法,常用的触摸屏控制芯片有ADS7843、ADS7846等,这些芯片内部集成了A/D转换器和触摸屏的驱动电路,同时要设计一定的软件;⑶与前面方式⑵相仿,有些处理器集成了A/D转换器,通过IO口模拟触摸屏的驱动信号也可实现触摸屏的控制。
ARM7202集成了ARM7TDMI CPU核、存储器管理单元(MMU)、8KB高速缓冲存储器(Cache),主频达70MHz。是一高性能嵌入式处理器。除触摸屏控制器外,其片内还包含了其他丰富的资源,如LCD控制器、SDRAM控制器、中断控制器、DMA 控制器等[1]。ARM7202与触摸屏的接口在软/硬件设计上有些与前面三种不同的方面。
2 硬件设计
2.1 电阻触摸屏原理
电阻触摸屏是一多层的复合膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层塑料层,它的内表面也涂有一层透明的导电层,在两层导电层之间有许多细小的透明隔离点把它们隔开绝缘,如图1。当手指触摸屏幕时,平常绝缘的两层导电层在触摸点位置就有了一个接触,控制器检测到这个接触后,其中一面导电层接通Y轴方向的5V均匀电压场,另一导电层将接触点的电压引至控制器进行A/D转换,得到电压值后与5V相比即可得触摸点的Y轴坐标,如图2。同理得出X轴的坐标。这是所有电阻触摸屏共同的基本原理。
2.2 ARM7202与触摸屏的接口
ARM7202片上资源包含触摸屏控制器,用于控制4线电阻式触摸屏。在5路A/D转换通道中A0和A1是用于触摸屏坐标采集的,同时芯片提供ATSXP、ATSXN、ATSYP和ATSYN四根扫描线分别对X方向和Y方向进行扫描。ATSXP和ATSXN在X方向施加正向电压时,在Y方向检测到X坐标的对应值;同理ATSYP和ATSYN在Y方向施加正向电压时,在X方向检测到Y坐标的对应值,分别由A0和A1采集。为了减少系统功耗和触摸屏所占CPU资源,只在有落笔时触摸屏控制器才启动扫描,通过A/D转换得到坐标的对应值,因此需在外部设计落笔检测电路,如图3所示。图中IRLML6302和IRLML2402分别为PMOSFET和NMOSFET,作为开关管控制X方向和Y方向的扫描输出。PB7接上拉电阻,检测落笔中断,当有落笔时,PB7检测到低电平,触发中断。PB6为中断检测电路的使能信号,当PB6为高电平时,中断有效,触摸屏扫描无效;反之中断无效,触摸屏扫描有效。
3 触摸屏控制程序机制
不同的 *** 作系统下对触摸屏的应用各有不同,但都包括了设备的初始化、设备读写及中断响应等基本模块。触摸屏的驱动程序涉及到两个中断:落笔中断和触摸屏A/D转换中断。所包含的程序模块有:触摸屏初始化、落笔中断服务程序、A/D中断服务程序、滤波程序和坐标转换程序。这里重点说明触摸屏的两个中断。
触摸屏初始化程序完成外部电路的中断设置和采样率的设置,并将触摸屏的A/D中断和A/D转换器电源关闭,使外部电路中断有效。
有落笔时,外部中断被触发,进入落笔中断服务程序。在落笔中断服务程序中清中断源,关外部中断,使外部中断电路无效,打开触摸屏中断和AD转换器电源。此时触摸屏电路开始扫描触摸屏。触摸屏A/D转换结束后,产生A/D中断,进入A/D中断服务程序。在触摸屏A/D中断服务程序中,清A/D中断,关触摸屏A/D中断,读A/D转换值。此时还要判断落笔是否继续,若无落笔,开外部电路中断,使外部中断电路有效,关A/D中断和A/D转换器电源,进入节能模式,如图4(a);若还有落笔,要继续开触摸屏A/D中断,使外部中断电路无效,触摸屏的A/D转换继续进行,如图4(b)所示。
图4 触摸屏程序流图
由A/D转换得到的值是触摸屏上触摸点的X坐标和Y坐标的值,要通过一定的方法转换为显示屏上的坐标。限于篇幅这里省略,其原理和实现方法见参考文献[2]。在A/D转换时,每次由A/D转换寄存器得到4组转换值,可以设计一个滤波程序以提高检测精度。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)