本文基于毫米级全方位无回转半径移动机器人课题。微系统配置示意图如图1所示。主要由主机Host(配有图像采集卡)、两个CCD摄像头(其中一个为显微摄像头)、微移动装配平台、微机器人本体和系统控制电路板等组成。计算机和摄像机组用于观察微机器人的方位,控制系统控制微机器人的移动。
本文在系统控制电路中嵌入式实现语音识别算法,通过语音控制微机器人。
微机器人控制系统的资源有限,控制方法比较复杂,并且需要有较高的实时性,因此本文采用的语音识别算法必须简单、识别率高、占用系统资源少。
HMM(隐马尔可夫模型)的适应性强、识别率高,是当前语音识别的主流算法。使用基于HMM非特定人的语音识别算法虽然借助模板匹配减小了识别所需的资源,但是前期的模板储存工作需要大量的计算和存储空间,因此移植到嵌入式系统还有一定的难度,所以很多嵌入式应用平台的训练部分仍在PC机上实现。
为了使训练和识别都在嵌入式系统上实现,本文给出了一种基于K均值分段HMM模型的实时学习语音识别算法,不仅解决了上述问题,而且做到了智能化,实现了真正意义上的自动语音识别。
1 增量K均值分段HMM的算法及实现
由于语音识别过程中非特定的因素较多,为了提高识别的准确率,针对本系统的特点,采用动态改变识别参数的方法提高系统的识别率。
训练算法是HMM中运算量最大、最复杂的部分,训练算法的输出是即将存储的模型。目前的语音识别系统大都使用贝斯曼参数的HMM模型,采取最大似然度算法。这些算法通常是批处理函数,所有的训练数据要在识别之前训练好并存储。因此很多嵌入式系统因为资源有限不能达到高识别率和实时输出。
本系统采用了自适应增量K均值分段算法。在每次输入新的语句时都连续地计算而不对前面的数据进行存储,这可以节约大量的时间和成本。输入语句时由系统的识别结果判断输入语句的序号,并对此语句的参数动态地修改,真正做到了实时学习。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)