硅电晶体仍然是智慧型手机和平板电脑等后PC时代产品的核心。然而,对于这些行动消费产品来说,电晶体是否成功的衡量指标与过去已经有很大的区别。频率(时脉速度)是PC时代的重要指标,中央处理单元(CPU)则是几十年来推动半导体技术进步的主要晶片。外形尺寸在过去几乎没什么影响力,也没有太多动力针对晶片(SoC)或封装(SiP)整合系统级功能。
而今,针对某一特定功能的外形尺寸、成本和功耗已经是行动市场中的重要驱动因素,从而也提高了晶片上整合功能性硬体(如电源管理、运算、音视讯、绘图、GPS和收音机)的重要性。这种从主要以性能为中心的晶片转向以功耗受限的晶片,以及对降低成本和提高系统级整合度的高度关注正动摇着传统的半导体产业。无晶圆厂供应商和代工企业使用SoC技术已经有十多年时间了,直到后PC时代行动产品的飞速普及才使得这种技术终于发挥全部潜力。在最近5年来,SoC技术已经从智慧手机的核心发展为实现平板电脑和超轻薄笔电(ultrabook)等全功能行动电脑的核心。
后PC时代
随着智慧型手机和平板电脑的发明,电脑运算模式已经产生了根本变化,完整的用户体验成为独立于基础技术原始性能的重要基准。苹果的iPhone和iPad正是这种模式转型的最佳例子。这两种设备都提供了令人高度满意的用户体验──并非因为它们能够以最先进的晶片提供最快的运算速度,而是由于能以合理的运算速度与价位实现丰富的功能。
表1:基于SoC(Nvidia)和CPU(英特尔)的微软Surface平板电脑比较。采用SoC的平板电脑更利于行动使用,而採用CPU的平板电脑在作为行动设备使用时的可携性较差。(来源:微软Surface网站)。
这些设备的功能共同增强了用户体验──卓越的绘图渲染、无线连接、快速开机、保持连线的待机状态、更长电池寿命和触控式屏幕应用。它们也许无法提供最快的原始电脑性能,但可让一般用户感觉速度很快,并提供了优质的用户体验。iPad代表种类广泛的后PC产品先驱。像华硕的Transformer、微软的Surface、Google的Nexus、苹果的MacBook Air和英特尔(Intel)的Ultrabook等诸多创新产品也重新定义了行动时代的电脑运算模式。
诸如iPad等后PC早期产品的成功关键是,这些产品是全新设计的,完全不受传统PC时代的软体或硬体影响。传统硅晶硬体技术的创新可能必须使用大量逻辑电晶体的更高性能独立式处理器(CPU)以及更复杂的软体层来使用巨大的记忆体容量。而iPad等新产品使用功耗极度受限的硬体和非常精益的软体来完成特殊任务(如用视讯解码器驱动显示器)。为了实现行动领域要求的高功效系统,尽可能转移最多的负载到硬体并同时使用精简的软体就显得非常重要。直接将传统PC硬体和软体硬塞进新的外形结构中无法实现高功效,也不会带来卓越的用户体验。
平板电脑和智慧手机的兴起并不会完全取代传统PC。在可预见的未来,PC仍将在每个桌面找到发挥空间,伺服器阵列也会在资料中心持续用于运算密集型应用。当然,徵诸以往的歷史发展,我们可以预期传统PC中的CPU半导体技术最终可能被智慧型手机的突破性SoC技术取代,或至少发生彻底改变。过去几年来,SoC技术的快速发展对这一假设提供了有力的佐证。
回顾历史演进
从1980年代末至1990年代初出现独立代工厂以来,半导体产业被划分为叁大实体──整合设备制造商(IDM,如英特尔、2009年前的AMD和叁星),无晶圆厂公司(fabless,如苹果、高通、博通、Nvidia),以及为fabless生产晶片的晶圆代工厂(如台积电、联电、叁星与GlobalFoundries)。
从历史上看,英特尔和AMD专注于生产基于CPU的晶片(如Core和Athlon),而Nvidia致力于为PC和伺服器市场生产独立的绘图晶片(GPU)。在这个领域中的所有其它公司都采用某种形式的晶片系统整合(SoC)来满足各自市场的不同需求。
SoC的一般定义是将各种功能硬体模组整合在晶片上,以满足特定的产品应用要求。最简单的SoC可能整合一些混合讯号和数位电路的基本连接晶片。较复杂的SoC可能在晶片上整合了应用处理器单元(APU)和GPU。功能更强的SoC进一步整合各种其它硬体模组(如GPU、音视讯解码器和数据机)。随着这种不断在晶片上整合各种功能的能力增加,使得SoC技术得以快速发展,从支援简单的功能手机、智慧型手机直到平板电脑。
伴随着行动电话和网际网路的出现,高通(Qualcomm)最早开始为成长中的连网市场设计晶片,而Nvidia最早作为GPU製造商出现在市玚上。随着时间的推移,这些公司都对不断演进的技术趋势作出了积极回应,并在其晶片中实现越来越高的功能整合度,也为其带来了成功。高通透过增加应用处理器(由ARM授权取得Krait)、GPU(收购AMD Imageon取得Adreno)和电源管理单元,从独立的连接晶片发展出丰富的产品线。高通的旗舰产品 Snapdragon系列现在包含所有这些模组,是一款功能非常强大的行动SoC产品。
同样地,Nvidia从独立的GPU制造商开始发展,其间不断增加应用核心(透过ARM授权)和连接模组(透过收购Icera)。Nvidia现在提供高度整合的行动SoC(Tegra系列)已被用于多种平板电脑中。就在几年前,未曾涉足行动晶片设计业务的苹果公司开始使用应用处理器(透过ARM授权)和GPU(透过ImaginaTIon Technologies授权)设计自己的SoC晶片(A系列)。叁星也收购了各种SoC建构模组,甚至更早就将这一趋势扩展到伺服器晶片。
业界的整并趋势象徵SoC影响力的不断增强。苹果收购PA-Semi,使其能自行设计自家的应用处理器。高通最近收购了Atheros以强化其无线连接套件,并收购Summit Technology,意在增强其电源管理能力。Nvidia收购Icera是为了增强其连接产品,英特尔也收购英飞凌无线部门期望获得进军基频连接市场的入场券。这些收购都指向一个整併中的市场,其中只有少数几家强大的公司能拥有所有的功能模组,从而可在不断成长中的行动市场作好激烈竞争的準备。
智慧型手机为SoC技术展现无穷潜力,并为SoC得以抗衡CPU提供了首款最重要的平台。晶片整合为智慧型手机带来的价值远远超过独立的桌上型电脑。使用专用功能模组比使用通用处理核心具有更多的优势──这些模组可工作在更低的频率,同时提供更高的系统级性能,而消耗的系统级功耗却更低。
另外,透过将更多的功能转移到硬体上实现,SoC可支援精简软体,因而实现更低的系统级功耗。使用专用核心可使智慧手机只执行用于特定任务的特定模组,而通用核心必须一直工作,与执行的任务无关。因此与独立CPU相较,SoC更适合行动设备应用。
早期的SoC技术可让代工生态系统公司拥有比英特尔等老牌公司更大的优势,而这种技术也广泛受益于智慧型手机出货量的快速成长。在第一个五年(直到2012年),英特尔根本无法进入智慧型手机市场。iPad的推出和随后平板电脑市场的成长更进一步巩固了这一趋势。
进步神速是SoC爆发性潜能的一种最佳指标,这不仅反映在功能性和出货量,也表现在所支援的强韧设计与软体生态系统普及上。近五年来,SoC技术从支援功能手机的基本运算/连网功能迅速发展成为所有智慧型手机和早期ultrabook的核心,可支援范围广泛的功能,包括音视讯、游戏、通讯和生产等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)