随着新能源车辆发展至今,BMS系统也经过了多个发展阶段。
从判断电池故障、荷电状态和容量估算等简单管理阶段,进阶为覆盖电池方方面面状态的全面管理阶段。
本章节我们将了解BMS的功能清单,并对部分核心功能进行详细说明,包括电池状态评估及功率估算,电池充放电管理和均衡管理、绝缘电阻检测,电池热管理,电池热监控,在线故障诊断和安全管理。
BMS功能清单
可以将BMS功能简单分为三大部分。
BMS基础功能
V/I/T采样,保护功能(过压、过流、过温、绝缘电阻),继电器驱动,状态采样,继电器粘连检测,CAN通信;
BMS核心功能
电芯均衡、SOP(功率)、SOE(能量)、SOC(荷电状态),SOH(健康程度);
BMS应用相关
碰撞信号检测、交/直流充电、充电器状态检测、热状态、加热/冷却需求、预充、唤醒/休眠、与VCU通信
不过从用户角度来理解,可大致分为两大功能“电池体检”&“安全卫士”。
01
电池体检
从时效性来说,对电池的体检强调的是即时性,BMS必须精准掌握电池状态。
即时“体检”,指的是电池数据采集和状态评估。
数据采集,可简单理解为给电池做例行的“体检”;在充放电过程中,实时采集电池组中每块电池的端电压、温度、充放电电流及总电压,防止电池发生过充电或过放电现象。
这种“体检”是在线的、持续的、不间断的。过程中当发现数据异常时,可及时查询对应电池状况,并挑选出有问题的电池,从而保持整组电池运行的可靠性和高效性。
“体检”结束之后,会进入分析、诊断、计算的阶段,之后生成“体检报告”,这个过程可以理解为电池的状态评估。
02
安全卫士
安全卫士只得是保护电池及人身安全。
电池过充、过放会带来局部过热,影响电池寿命不说,严重时会威胁到电池组的安全,进而引发人身安全隐患。这时,BMS的“充放电管理”模块就开启了保护职能,一方面与整车、充电机实现通讯,另一方面实时提供电池状态,便于及时发出指令控制,有效防止高充、低放的发生。
在保护电池的模块,均衡也是很重要的一环,是保护并提升电池寿命的必要手段。另外,电池的保护还包括过压、欠压、过温、过流等的保护。简单来说,当实际参数高于或低于某约定值时,系统将自动做出判断,并采取断开、预充等方式保护电池安全。
在人身安全方面,BMS通过高压控制的手段来保护。电池高压可达300-500V,远超人体安全电压36V,风险隐患极大,必须做好高压控制,最常见的就是继电器、高压互锁、绝缘防护。周全的高压防护控制,可有效保护司机、乘客和维护人员的人身安全。
电池状态评估
下面我们就来对BMS的几个核心功能做下详细说明。
如同手机通过检测电池的电压和电流来估算电池荷电状态,为用户显示剩余电量,动力电池的BMS系统也是通过估算电量的SOC,来为整车控制系统提供数据输入,为驾驶员提供电量和续航里程数据作为车辆使用的参考信息。
SOC的全称State of Charge,荷电状态,也称为剩余电量。满充的电池,其SOC为100%,反之则为0%。
用户可通过车上仪表显示,看到这些数据,从而确认电池的工作、功能状态。据此,在保护电池的基础上,将潜力发挥最大化,大大提升驾乘体验。
因此SOC等数据估算的准确与否,就显得特别重要。估算不准带来的后果,有可能是汽车抛锚、与预期的行驶里程数不符等。
举个例子,满电情况下续航里程为400公里的车辆在道路行驶。若估算准确,当SOC显示为10%时,还可能行驶的里程是40公里;若估算不准,SOC达到15%,则用户以为的里程为60公里,事实上可能在行驶40公里之后,就已经没电了。很显然,对于用户来说,这样的情况很糟糕。
SOC外,BMS还会估算电池的放电深度(DOD)、健康状态(SOH)、功能状态(SOF)、能量状态(SOE)等:
SOC
State of Charge,电池剩余电量百分比;
SOE
State of Energy,电池剩余电量,对整车而言意味着剩余里程;
SOH
State of Health,电池健康度,电池当前的容量与出厂容量的百分比;
SOF
State of FunTIon,电池功能状态,是BMS控制策略中的一个参数;
DOD
Depth of discharge,放电深度,指从电池取出电量占额定容量的百分比,相同容量的电池,放电深度越大,电池释放能量就越多,电池寿命越短。
功率估算
车辆控制系统根据刚才这些数据,确定系统的动力输出形式,以及输出功率。
比如:以混动车举例,何时启动纯电模式,何时启动发动机,何时关闭电机,这些控制逻辑都需要以电池的荷电状态,最大放点电流、最大充电电流、最高充电电压、最低充电电压等数据作为输入,而BMS则是这些关键数据的提供方。
其实,BMS的剩余容量估算是BMS的核心内容也一直是业界难点。首先它是一个估算值,根据电池组电压,电流,放电倍率,温度等因素经过算法计算得出的值,这就要求整个系统先要采集的足够准,足够快才能保证最后的结果准确。
可是这又受制于主控芯片的处理速度,AFE的精度,采集电流的方案选择,温度传感器的精度。
还有从系统整体考量采样频率的大小诸多因素有关。选用高处理速度高精度的芯片势必会增加成本,采样频率越快系统负荷也越大,所以目前技术条件下大家都是参考具体项目来权衡各方面因素。
简单来说,就是根据V/I/T测量值,对内阻,容量进行估算,得出SOC估计值,SOH估计值,综合两者得出SOP可用功率,并最终反应到用户那里,就是剩余可行驶里程数。
估算值精度
以上提及的估算值精度,按国标定义,可汇总如表格所示:
电池过充/电池过放
在解释BMS对电池充放电进行均衡管理前,需要了解电池过充、过放的概念。
电池过充,指的是用超过单体电池上限的充电电压充电,或者在电池已经充满的情况下继续充电。
电池过充,不仅会引起电池性能下降,有时还会引起过热甚至是冒烟起火。
电池过放的概念则与过充相反。
在电池放电到低于下限电压时,仍然被要求继续放电,称为过放。
出现电池过放时,电池内部会发生异于常态的化学反应,导致内部活性物质出现不可逆的变化,使电池容量下降,严重的情况,该单体电池将无法使用。
因此,BMS需要监控各单体电池的电压,控制其充电电流和放电电流,既不能超过上限电压,又不能低于下限电压。
SOC过充/过放上下限
电池均衡方式
不同车企对BMS的算法采取不同的设计理念,对于车辆过充和过放的范围也是不一样的,有些车型限定使用容量的60%,通常充电到80%,放电到20%。
低电量电池经过长期存放后,会出现自放电现象。限定使用容量的做法,本质上是为了保留部分电量,降低由于电池自放电而引起的过放概率。
BMS对电池电压压差进行检测,通过电池均衡,起到维护改善成组电池一致性,提高电池组性能的目的。
电池均衡的方式一般有两种:
01
被动均衡
指的是先行消耗高能电池的多余能量,一般是通过电阻放电的方式,对高能电池进行放电,通常以热量形式释放电量,为其他低能电池争取更多充电时间。
被动均衡的优点是成本低、电路设计简单。缺点是受限于荷电残余量最少的电池,无法增加低能电池的容量,对释放电量而产生的热量而言,是一种浪费。
02
主动均衡
指的是将高能电池上的电量转移到低能电池上,从而达到电池均衡的目的。
由于能量可以被转移,电池均衡的效率比较高,能量损失小,充电时间短。缺点则是结构复杂,成本高,带有主动均衡功能的BMS普遍高于被动均衡功能的BMS。
审核编辑:刘清
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)