芯片解密所要具备的条件是:
第一、你要有一定的知识,懂得如何将一个已加密的芯片变为不加密。
第二、必须有读取程序的工具,可能有人就会说,无非就是一个编程器。没错,就是一个编程器,但并非所有的编程器是具备读取的功能。这也就是为什么我们有时候为了解密一个芯片而会去开发一个可读编程器的原因。那我们就讲讲,芯片解密常有的一些方法。
1、软件攻击
该技术通常使用处理器通信接口并利用协议、加密算法或这些算法中的安全漏洞来进行攻击。软件攻击取得成功的一个典型事例是对早期ATMELAT89C系列单片机的攻击。攻击者利用了该系列单片机擦除 *** 作时序设计上的漏洞,使用自编程序在擦除加密锁定位后,停止下一步擦除片内程序存储器数据的 *** 作,从而使加过密的单片机变成没加密的单片机,然后利用编程器读出片内程序。
至于在其他加密方法的基础上,可以研究出一些设备,配合一定的软件,来做软件攻击。近期国内出现了一种凯基迪科技51芯片解密设备(成都一位高手搞出来的),这种解密器主要针对SyncMos.Winbond,在生产工艺上的漏洞,利用某些编程器定位插字节,通过一定的方法查找芯片中是否有连续空位,也就是说查找芯片中连续的FFFF字节,插入的字节能够执行把片内的程序送到片外的指令,然后用解密的设备进行截获,这样芯片内部的程序就被解密完成了。
2、电子探测攻击
该技术通常以高时间分辨率来监控处理器在正常 *** 作时所有电源和接口连接的模拟特性,并通过监控它的电磁辐射特性来实施攻击。因为单片机是一个活动的电子器件,当它执行不同的指令时,对应的电源功率消耗也相应变化。
这样通过使用特殊的电子测量仪器和数学统计方法分析和检测这些变化,即可获取单片机中的特定关键信息。至于RF编程器可以直接读出老的型号的加密MCU中的程序,就是采用这个原理。
3、过错产生技术
该技术使用异常工作条件来使处理器出错,然后提供额外的访问来进行攻击。使用最广泛的过错产生攻击手段包括电压冲击和时钟冲击。低电压和高电压攻击可用来禁止保护电路工作或强制处理器执行错误 *** 作。时钟瞬态跳变也许会复位保护电路而不会破坏受保护信息。电源和时钟瞬态跳变可以在某些处理器中影响单条指令的解码和执行。
4、探针技术
该技术是直接暴露芯片内部连线,然后观察、 *** 控、干扰单片机以达到攻击目的。
5、紫外线攻击方法
紫外线攻击也称为UV攻击方法,就是利用紫外线照射芯片,让加密的芯片变成了不加密的芯片,然后用编程器直接读出程序。这种方法适合OTP的芯片,做单片机的工程师都知道OTP的芯片只能用紫外线才可以擦除。那么要擦出加密也是需要用到紫外线。
目前台湾生产的大部分OTP芯片都是可以使用这种方法解密的,感兴趣的可以试验或到去下载一些技术资料。OTP芯片的封装有陶瓷封装的一半会有石英窗口,这种事可以直接用紫外线照射的,如果是用塑料封装的,就需要先将芯片开盖,将晶圆暴露以后才可以采用紫外光照射。由于这种芯片的加密性比较差,解密基本不需要任何成本,所以市场上这种芯片解密的价格非常便宜,比如SONIX的SN8P2511解密,飞凌单片机解密等价格就非常便宜。
6、利用芯片漏洞
很多芯片在设计的时候有加密的漏洞,这类芯片就可以利用漏洞来攻击芯片读出存储器里的代码,比如我们以前的文章里提到的利用芯片代码的漏洞,如果能找到联系的FF这样的代码就可以插入字节,来达到解密。
还有的是搜索代码里是否含有某个特殊的字节,如果有这样的字节,就可以利用这个字节来将程序导出。这类芯片解密以华邦、新茂的单片为例的比较多,如W78E516解密,N79E825解密等,ATMEL的51系列的AT89C51解密是利用代码的字节漏洞来解密的。
另外有的芯片具有明显的漏洞的,比如在加密后某个管脚再加电信号的时候,会使加密的芯片变成不加密的芯片,由于涉及到国内某家单片机厂家,名称就不列出来了。目前市场上能看到的芯片解密器都是利用芯片或程序的漏洞来实现解密的。
不过外面能买到的解密其基本上是能解得型号很少,因为一般解密公司都不会将核心的东西对外公布或转让。而解密公司自己内部为了解密的方便,自己会使用自制的解密工具,如果致芯科技具有可以解密MS9S09AW32的解密器、能专门解密Lpc2119LPC2368等ARM的解密器,使用这样的解密器解密速度快,客户到公司基本上立等可取。
7、FIB恢复加密熔丝方法
这种方法适用于很多的具有熔丝加密的芯片,最具有代表性的芯片就是ti的msp430解密的方法,因为MSP430加密的时候要烧熔丝,那么只要能将熔丝恢复上,那就变成了不加密的芯片了,如MSP430F1101A解密、MSP430F149解密、MSP430F425解密等。
一般解密公司利用探针来实现,将熔丝位连上,也有的人因为自己没有太多的解密设备,需要交由其它半导体线路修改的公司来修改线路,一般可以使用FIB(聚焦离子束)设备来将线路连接上,或是用专用的激光修改的设备将线路恢复。这些设备目前在国内的二手设备很多,也价格很便宜,一些有实力的解密公司都配置了自己的设备。这种方法由于需要设备和耗材,不是好的方法,但是很多芯片如果没有更好的方法的时候,就需要这种方法来实现。
8、修改加密线路的方法
目前市场上的CPLD以及DSP芯片设计复杂,加密性能要高,采用上述方法是很难做到解密的,那么就需要对芯片结构作前面的分析,然后找到加密电路,然后利用芯片线路修改的设备将芯片的线路做一些修改,让加密电路失效,让加密的DSP或CPLD变成了不加密的芯片从而可以读出代码。如TMS320LF2407A解密,TMS320F28335解密、TMS320F2812解密就是采用这种方法。
了解了这些破解芯片的方法,相应的,我们在设计芯片时也要对这些漏洞尽量加以规避,使自己的芯片更加安全。对于新手来说,设计一款单片机不是容易的事,如果有现成的模块可以使用将会大大节省时间和精力,就有专门为电子工程师提供的电子设计模块,并且全部使用立创商城的正品元器件,质量可靠、售后有保障,可以帮助大家快速搭建产品原型,缩短制作周期
.1 半导体物理基础 本章从半导体器件的工作机理出发,简单介绍半导体物理基础知识,包括本征半导体,杂质半导体,PN结分别讨论晶体二极管的特性和典型应用电路,双极型晶体管和场效应管的结构,工作机理,特性和应用电路,重点是掌握器件的特性. 媒质导体:对电信号有良好的导通性,如绝大多数金属,电解液,以及电离气体.绝缘体:对电信号起阻断作用,如玻璃和橡胶,其电阻率介于108 ~ 1020 ·m. 半导体:导电能力介于导体和绝缘体之间,如硅 (Si) ,锗 (Ge) 和砷化镓 (GaAs) .半导体的导电能力随温度,光照和掺杂等因素发生显著变化,这些特点使它们成为制作半导体元器件的重要材料.4.1.1 本征半导体 纯净的硅和锗单晶体称为本征半导体.硅和锗的原子最外层轨道上都有四个电子,称为价电子,每个价电子带一个单位的负电荷.因为整个原子呈电中性,而其物理化学性质很大程度上取决于最外层的价电子,所以研究中硅和锗原子可以用简化模型代表 .每个原子最外层轨道上的四个价电子为相邻原子核所共有,形成共价键.共价键中的价电子是不能导电的束缚电子. 价电子可以获得足够大的能量,挣脱共价键的束缚,游离出去,成为自由电子,并在共价键处留下带有一个单位的正电荷的空穴.这个过程称为本征激发.本征激发产生成对的自由电子和空穴,所以本征半导体中自由电子和空穴的数量相等.价电子的反向递补运动等价为空穴在半导体中自由移动.因此,在本征激发的作用下,本征半导体中出现了带负电的自由电子和带正电的空穴,二者都可以参与导电,统称为载流子. 自由电子和空穴在自由移动过程中相遇时,自由电子填入空穴,释放出能量,从而消失一对载流子,这个过程称为复合, 平衡状态时,载流子的浓度不再变化.分别用ni和pi表示自由电子和空穴的浓度 (cm-3) ,理论上 其中 T 为绝对温度 (K) EG0 为T = 0 K时的禁带宽度,硅原子为1.21 eV,锗为0.78 eVk = 8.63 10- 5 eV / K为玻尔兹曼常数A0为常数,硅材料为3.87 1016 cm- 3 K- 3 / 2,锗为1.76 1016 cm- 3 K- 3 / 2. 4.1.2 N 型半导体和 P 型半导体 本征激发产生的自由电子和空穴的数量相对很少,这说明本征半导体的导电能力很弱.我们可以人工少量掺杂某些元素的原子,从而显著提高半导体的导电能力,这样获得的半导体称为杂质半导体.根据掺杂元素的不同,杂质半导体分为 N 型半导体和 P 型半导体. 一,N 型半导体在本征半导体中掺入五价原子,即构成 N 型半导体.N 型半导体中每掺杂一个杂质元素的原子,就提供一个自由电子,从而大量增加了自由电子的浓度一一施主电离多数载流子一一自由电子少数载流子一一空穴但半导体仍保持电中性 热平衡时,杂质半导体中多子浓度和少子浓度的乘积恒等于本征半导体中载流子浓度 ni 的平方,所以空穴的浓度 pn为因为 ni 容易受到温度的影响发生显著变化,所以 pn 也随环境的改变明显变化. 自由电子浓度杂质浓度二,P 型半导体在本征半导体中掺入三价原子,即构成 P 型半导体.P 型半导体中每掺杂一个杂质元素的原子,就提供一个空穴,从而大量增加了空穴的浓度一一受主电离多数载流子一一空穴少数载流子一一自由电子但半导体仍保持电中性而自由电子的浓度 np 为环境温度也明显影响 np 的取值. 空穴浓度掺杂浓庹4.1.3 漂移电流和扩散电流 半导体中载流子进行定向运动,就会形成半导体中的电流.半导体电流半导体电流漂移电流:在电场的作用下,自由电子会逆着电场方向漂移,而空穴则顺着电场方向漂移,这样产生的电流称为漂移电流,该电流的大小主要取决于载流子的浓度,迁移率和电场强度.扩散电流:半导体中载流子浓度不均匀分布时,载流子会从高浓度区向低浓度区扩散,从而形成扩散电流,该电流的大小正比于载流子的浓度差即浓度梯度的大小.4.2 PN 结 通过掺杂工艺,把本征半导体的一边做成 P 型半导体,另一边做成 N 型半导体,则 P 型半导体和 N 型半导体的交接面处会形成一个有特殊物理性质的薄层,称为 PN 结. 4.2.1 PN 结的形成 多子扩散空间电荷区,内建电场和内建电位差的产生 少子漂移动态平衡空间电荷区又称为耗尽区或势垒区.在掺杂浓度不对称的 PN 结中,耗尽区在重掺杂一边延伸较小,而在轻掺杂一边延伸较大.4.2.2 PN 结的单向导电特性 一,正向偏置的 PN 结正向偏置耗尽区变窄扩散运动加强,漂移运动减弱正向电流二,反向偏置的 PN 结反向偏置耗尽区变宽扩散运动减弱,漂移运动加强反向电流PN 结的单向导电特性:PN 结只需要较小的正向电压,就可以使耗尽区变得很薄,从而产生较大的正向电流,而且正向电流随正向电压的微小变化会发生明显改变.而在反偏时,少子只能提供很小的漂移电流,并且基本上不随反向电压而变化.4.2.3 PN 结的击穿特性 当 PN 结上的反向电压足够大时,其中的反向电流会急剧增大,这种现象称为 PN 结的击穿. 雪崩击穿:反偏的 PN 结中,耗尽区中少子在漂移运动中被电场作功,动能增大.当少子的动能足以使其在与价电子碰撞时发生碰撞电离,把价电子击出共价键,产生一对自由电子和空穴,连锁碰撞使得耗尽区内的载流子数量剧增,引起反向电流急剧增大.雪崩击穿出现在轻掺杂的 PN 结中.齐纳击穿:在重掺杂的 PN 结中,耗尽区较窄,所以反向电压在其中产生较强的电场.电场强到能直接将价电子拉出共价键,发生场致激发,产生大量的自由电子和空穴,使得反向电流急剧增大,这种击穿称为齐纳击穿.PN 结击穿时,只要限制反向电流不要过大,就可以保护 PN 结不受损坏.PN 结击穿4.2.4 PN 结的电容特性 PN 结能够存贮电荷,而且电荷的变化与外加电压的变化有关,这说明 PN 结具有电容效应. 一,势垒电容 CT0为 u = 0 时的 CT,与 PN 结的结构和掺杂浓度等因素有关UB为内建电位差n 为变容指数,取值一般在 1 / 3 ~ 6 之间.当反向电压 u 绝对值增大时,CT 将减小. 二,扩散电容 PN 结的结电容为势垒电容和扩散电容之和,即 Cj = CT + CD.CT 和 CD 都随外加电压的变化而改变,所以都是非线性电容.当 PN 结正偏时,CD 远大于 CT ,即 Cj CD 反偏的 PN 结中,CT 远大于 CD,则 Cj CT .4.3 晶体二极管 二极管可以分为硅二极管和锗二极管,简称为硅管和锗管. 4.3.1 二极管的伏安特性一一 指数特性IS 为反向饱和电流,q 为电子电量 (1.60 10- 19C) UT = kT/q,称为热电压,在室温 27℃ 即 300 K 时,UT = 26 mV. 一,二极管的导通,截止和击穿当 uD >0 且超过特定值 UD(on) 时,iD 变得明显,此时认为二极管导通,UD(on) 称为导通电压 (死区电压) uD 0.7 V时,D处于导通状态,等效成短路,所以输出电压uo = ui - 0.7当ui 0时,D1和D2上加的是正向电压,处于导通状态,而D3和D4上加的是反向电压,处于截止状态.输出电压uo的正极与ui的正极通过D1相连,它们的负极通过D2相连,所以uo = ui当ui 0时,二极管D1截止,D2导通,电路等效为图 (b) 所示的反相比例放大器,uo = - (R2 / R1)ui当ui 0时,uo1 = - ui,uo = ui当ui 2.7 V时,D导通,所以uo = 2.7 V当ui <2.7 V时,D截止,其支路等效为开路,uo = ui.于是可以根据ui的波形得到uo的波形,如图 (c) 所示,该电路把ui超出2.7 V的部分削去后进行输出,是上限幅电路. [例4.3.7]二极管限幅电路如图 (a) 所示,其中二极管D1和D2的导通电压UD(on) = 0.3 V,交流电阻rD 0.输入电压ui的波形在图 (b) 中给出,作出输出电压uo的波形. 解:D1处于导通与截止之间的临界状态时,其支路两端电压为 - E - UD(on) = - 2.3 V.当ui - 2.3 V时,D1截止,支路等效为开路,uo = ui.所以D1实现了下限幅D2处于临界状态时,其支路两端电压为 E + UD(on) = 2.3 V.当ui >2.3 V时,D2导通,uo = 2.3 V当ui <2.3 V时,D2截止,支路等效为开路,uo = ui.所以D2实现了上限幅.综合uo的波形如图 (c) 所示,该电路把ui超出 2.3 V的部分削去后进行输出,完成双向限幅. 限幅电路的基本用途是控制输入电压不超过允许范围,以保护后级电路的安全工作.设二极管的导通电压UD(on) = 0.7 V,在图中,当 - 0.7 V <ui 0.7 V时,D1导通,D2截止,R1,D1和R2构成回路,对ui分压,集成运放输入端的电压被限制在UD(on) = 0.7 V当ui <- 0.7 V时,D1截止,D2导通, R1,D2和R2构成回路,对ui分压,集成运放输入端的电压被限制在 - UD(on) = - 0.7 V.该电路把ui限幅到 0.7 V到 - 0.7 V之间,保护集成运放.图中,当 - 0.7 V <ui 5.7 V时,D1导通,D2截止,A / D的输入电压被限制在5.7 V当ui <- 0.7 V时,D1截止,D2导通,A / D的输入电压被限制在 - 0.7 V.该电路对ui的限幅范围是 - 0.7 V到 5.7 V.[例4.3.8]稳压二极管限幅电路如图 (a) 所示,其中稳压二极管DZ1和DZ2的稳定电压UZ = 5 V,导通电压UD(on) 近似为零.输入电压ui的波形在图 (b) 中给出,作出输出电压uo的波形. 解:当 | ui | 1 V时,DZ1和DZ2一个导通,另一个击穿,此时反馈电流主要流过稳压二极管支路,uo稳定在 5 V.由此得到图 (c) 所示的uo波形. 图示电路为单运放弛张振荡器.其中集成运放用作反相迟滞比较器,输出电源电压UCC或 - UEE,R3隔离输出的电源电压与稳压二极管DZ1和DZ2限幅后的电压.仍然认为DZ1和DZ2的稳定电压为UZ,而导通电压UD(on) 近似为零.经过限幅,输出电压uo可以是高电压UOH = UZ或低电压UOL = - UZ.三,电平选择电路 [例4.3.9]图 (a) 给出了一个二极管电平选择电路,其中二极管D1和D2为理想二极管,输入信号ui1和ui2的幅度均小于电源电压E,波形如图 (b) 所示.分析电路的工作原理,并作出输出信号uo的波形. 解:因为ui1和ui2均小于E,所以D1和D2至少有一个处于导通状态.不妨假设ui1 ui2时,D2导通,D1截止,uo = ui2只有当ui1 = ui2时,D1和D2才同时导通,uo = ui1 = ui2.uo的波形如图 (b) 所示.该电路完成低电平选择功能,当高,低电平分别代表逻辑1和逻辑0时,就实现了逻辑"与"运算. 四,峰值检波电路 [例4.3.10]分析图示峰值检波电路的工作原理. 解:电路中集成运放A2起电压跟随器作用.当ui >uo时,uo1 >0,二极管D导通,uo1对电容C充电,此时集成运放A1也成为跟随器,uo = uC ui,即uo随着ui增大当ui <uo时,uo1 <0,D截止,C不放电,uo = uC保持不变,此时A1是电压比较器.波形如图 (b) 所示.电路中场效应管V用作复位开关,当复位信号uG到来时直接对C放电,重新进行峰值检波. 4.4 双极型晶体管 NPN型晶体管 PNP型晶体管 晶体管的物理结构有如下特点:发射区相对基区重掺杂基区很薄,只有零点几到数微米集电结面积大于发射结面积. 一,发射区向基区注入电子_ 电子注入电流IEN,空穴注入电流IEP_二,基区中自由电子边扩散边复合_ 基区复合电流IBN_三,集电区收集自由电子_ 收集电流ICN反向饱和电流ICBO4.4.1 晶体管的工作原理晶体管三个极电流与内部载流子电流的关系: 共发射极直流电流放大倍数:共基极直流电流放大倍数:换算关系:晶体管的放大能力参数 晶体管的极电流关系 描述:描述: 4.4.2 晶体管的伏安特性 一,输出特性 放大区(发射结正偏,集电结反偏 )共发射极交流电流放大倍数:共基极交流电流放大倍数:近似关系:恒流输出和基调效应饱和区(发射结正偏,集电结正偏 )_ 饱和压降 uCE(sat) _截止区(发射结反偏,集电结反偏 )_极电流绝对值很小二,输入特性 当uBE大于导通电压 UBE(on) 时,晶体管导通,即处于放大状态或饱和状态.这两种状态下uBE近似等于UBE(on) ,所以也可以认为UBE(on) 是导通的晶体管输入端固定的管压降当uBE 0,所以集电结反偏,假设成立,UO = UC = 4 V当UI = 5 V时,计算得到UCB = - 3.28 V <0,所以晶体管处于饱和状态,UO = UCE(sat) . [例4.4.2]晶体管直流偏置电路如图所示,已知晶体管的UBE(on) = - 0.7 V, = 50.判断晶体管的工作状态,并计算IB,IC和UCE. 解:图中晶体管是PNP型,UBE(on) = UB - UE = (UCC - IBRB) - IERE = UCC - IBRB - (1+b)IBRE = - 0.7 V,得到IB = - 37.4 A <0,所以晶体管处于放大或饱和状态.IC = bIB = - 1.87 mA,UCB = UC - UB = (UCC - ICRC) - (UCC - IBRB) = - 3.74 V | UGS(off) | ) uGS和iD为平方率关系.预夹断导致uDS对iD的控制能力很弱.可变电阻区(| uGS | | UGS(off) |且| uDG | | UGS(off) |)iD = 0三,转移特性预夹断4.5.2 绝缘栅场效应管 绝缘栅场效应管记为MOSFET,根据结构上是否存在原始导电沟道,MOSFET又分为增强型MOSFET和耗尽型MOSFET. 一,工作原理 UGS = 0 ID = 0UGS >UGS(th) 电场 反型层 导电沟道 ID >0UGS控制ID的大小N沟道增强型MOSFETN沟道耗尽型MOSFET在UGS = 0时就存在ID = ID0.UGS的增大将增大ID.当UGS - UGS(off) ,所以该场效应管工作在恒流区.图 (b) 中是P沟道增强型MOSFET,UGS = - 5 (V) - UGS(th) ,所以该场效应管工作在可变电阻区. 解:图 (a) 中是N沟道JFET,UGS = 0 >UGS(off) ,所以该场效应管工作在恒流区或可变电阻区,且ID一,方波,锯齿波发生器 4.5.5 场效应管应用电路举例 集成运放A1构成弛张振荡器,A2构成反相积分器.振荡器输出的方波uo1经过二极管D和电阻R5限幅后,得到uo2,控制JFET开关V的状态.当uo1为低电平时,V打开,电源电压E通过R6对电容C2充电,输出电压uo随时间线性上升当uo1为高电平时,V闭合,C2通过V放电,uo瞬间减小到零. 二,取样保持电路 A1和A2都构成跟随器,起传递电压,隔离电流的作用.取样脉冲uS控制JFET开关V的状态.当取样脉冲到来时,V闭合.此时,如果uo1 >uC则电容C被充电,uC很快上升如果uo1 <uC则C放电,uC迅速下降,这使得uC = uo1,而uo1 = ui,uo = uC ,所以uo = ui.当取样脉冲过去时,V打开,uC不变,则uo保持取样脉冲最后瞬间的ui值. 三,相敏检波电路 因此前级放大器称为符号电路.场效管截止场效管导通集成运放A2构成低通滤波器,取出uo1的直流分量,即时间平均值uo.uG和ui同频时,uo取决于uG和ui的相位差,所以该电路称为相敏检波电路. NPN晶体管结型场效应管JEFT增强型NMOSEFT指数关系平方律关系场效应管和晶体管的主要区别包括:晶体管处于放大状态或饱和状态时,存在一定的基极电流,输入电阻较小.场效应管中,JFET的输入端PN结反偏,MOSFET则用SiO2绝缘体隔离了栅极和导电沟道,所以场效应管的栅极电流很小,输入电阻极大.晶体管中自由电子和空穴同时参与导电,主要导电依靠基区中非平衡少子的扩散运动,所以导电能力容易受外界因素如温度的影响.场效应管只依靠自由电子和空穴之一在导电沟道中作漂移运动实现导电,导电能力不易受环境的干扰.场效应管的源极和漏极结构对称,可以互换使用.晶体管虽然发射区和集电区是同型的杂质半导体,但由于制作工艺不同,二者不能互换使用.欢迎分享,转载请注明来源:内存溢出
评论列表(0条)