室温铁磁性半导体找到新获得途径

室温铁磁性半导体找到新获得途径,第1张

如何获得室温铁磁性半导体,是量子计算、高频器件、高密度信息存储的一个重要环节。国际权威期刊《Nano Today》近日刊文显示,郑州大学许群教授课题组利用CO2在非范德华力晶体孔道内构建强内应力场,成功制备出具有室温响应的二维铁磁性VO2。

许群介绍,面对更先进的信息技术需求,在更高集成度、更高快速响应、更低功耗等方面对电子器件有更高的要求。二维铁磁材料由于其少层原子层厚度和可控的电子自旋,已成为下一代自旋电子器件的研究热点。

他说,现有非磁性二维材料中诱导磁矩是通过调节应变、边缘结构或缺陷工程来引入电荷载流子,这些都集中在外部诱导磁响应上,如何突破传统制备模式并深刻理解二维铁磁材料的本征特性极具重要意义。

过渡金属氧化物VO2表现出许多新的物理现象,如金属-绝缘体转变和室温铁磁性。在强相关过渡金属氧化物(TMOs)材料中,d层和f层电子其自由度(自旋、电荷和轨道矩)的相互作用使得结构和磁性对温度、压力和组分等参数的微小变化非常敏感,然而多数情况,来自外部诱导的局部磁矩非常弱,并且产生的磁性通常只关联表面少数原子。因此相较于缺陷工程,如何打破序参量的对称性,在材料中创造新的表面或诱导晶体到无定形的转变,进而产生本征磁各向异性,是一个有效的路径。

许群教授课题组提出一种CO2诱导相变工程策略,将非范德华体相VO2成功转化为室温响应的2D铁磁体。引入的CO2不仅可以引发材料表界面相变,还可以在VO2的晶格孔道中产生强大的内力场,由此导致的共价键选择性断裂,将三维VO2晶体转化为二维纳米片,最终获得“锁定”的亚稳相的2D拓扑结构并表现出显著增强的室温铁磁响应。该研究工作为二维非范德华铁磁体的制备开辟了一条新途径,同时对CO2在晶体孔道中产生的内应力及其关联亚稳相产生的机理进行了探讨,为进一步拓展超临界CO2在构筑新型纳微结构上的应用奠定了实验和理论基础。该工作得到了国家自然科学基金、郑州大学一流学科计划等项目的支持。

编辑/范辉

半导体材料:氧化锌半导瓷 化学式:ZnO 基本概况:ZnO(氧化锌)是一种新型的化合物半导体材料Ⅱ一Ⅵ宽禁带(E =3.37eV)。在常温常压下其是一种非常典型的直接宽禁半导体材料,稳定相是六方纤锌矿结构,其禁带宽度所对应紫外光波长,有希望能够开发出蓝绿光、蓝光、紫外光等等多种发光器件。氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。 晶体数据:针状体根部直径 (µm) 0.1~10 比热 (J/g·k) 5.52 耐热性能 (℃) 1720(升华) 真实密度 (g/cm3) 5.8 表观密度 (g/cm3) 0.01~0.5 粉体电阻率 (Ω·cm) 104~109 介电常数 (实部) 4.5~30 介电常数 (虚部) 20~135 拉伸强度 (MPa) 1.2×104 d性模量 (MPa) 3.5×105 热膨胀率 (%/℃) 4×106 氧化锌空间结构 电镜下的氧化锌半导体材料 制备方法:纯氧化锌是煅烧锌矿石或在空气中燃烧锌条而得。氧化锌结晶是六角晶系,晶格常数α=3.25×10-10m,c=5.20×10-10m。室温下满足化学计量比关系的氧化锌晶体或多晶体中导电载流子极少,具有绝缘体的性能。在空气中经高温处理后,将会因氧的过剩或不足而成为偏离化学计量比关系的不完整晶体,即含有氧缺位或氧填隙锌的非化学计量比结晶,使自由电子或空穴大大增多,氧化锌由白色绝缘体变成青黑色半导体。当在氧化锌中加入适量的其他氧化物或盐类,如Bi2O3、Sb2O3、Co2O3、MnO、Cr2O3、Al2O3或Al(NO3)2等作为添加剂,按一般的陶瓷工艺成型烧结,可以制得氧化锌半导瓷。理论模型:六方纤锌矿结构是理想的氧化锌,对称性C6v-4、属于P63mc空间群,品格常数C=O.521 nm,Y=120 ,a=b=O.325 nm,α=β= 90。。其中c/a较理想的六角柱紧堆积结构的1.633稍小为1.602。其它方向的氧ZnO键长为O.197 nm,只有c轴方向为0.199 nm,其晶胞由锌的六角密堆积与氧的六角密堆积反向套够而成。本文所有的及孙模型都是以超晶胞为基础的模型。我们可以看出,在氧化锌中的配位体是一个三角锥,锥顶原子和中心原子的键长与锥面三个原子的键长相比要稍大,其棱长小于底面边长。所以,ZnO 四面体为晶体中02-一配位多面体,O2-与Zn 配位情况基本相同。 计算结果:利用实验晶格参数对理想的ZnO晶体的电子结构进行了计算。其中包括总体态密度,能带结构,分波态密度。图3,图4,图5为计算结果。用其他理论方法计算的结果与本文计算结果相符合。我们可以从图3,图4,图5中看出,基本上,ZnO的价带可分为两个区域,分别是-4.0~0 eV的上价带区以及一6.0~L4.0 eV的下价带。很显然,ZnO下价带区则主要是Zn3d态贡献的,而上价带区则主要是由02p态形成的。在一18 eV处由02s态贡献的价带部分,与其他两个价带由于之间的相互作用相对较弱,本文不做相关讨论。对于主要来源干Zn4s态贡献的导带部分,从Zn4s态到02p态电子具有明显的跃迁过程,氧位置处的局域态密度的引力中心受到影响向低能级方向移动,这就表明了,理想ZnO是一个共价键较弱,离子性较强的混合键金属氧化物半导体材料。组成:这种半导瓷由半导电的氧化锌晶粒及添加剂成分构成的晶粒间层所组成,其理想结构模型如图。由于每一个氧化锌晶粒和晶粒间层之间都能形成一个接触区,具有一般半导体接触的单向导电性,所以两个晶粒间存在两个相反位置的整流结,一块氧化锌半导瓷片是大量相反放置的整流结组的堆积。 图6:氧化锌半导瓷空间结构氧化锌半导瓷的伏安特性:当外加电压于这种材料时,低电压下,由于反偏整流结的阻挡作用,材料呈高阻状态,具有绝缘性能。当电压高达一定值时,整流结发生击穿,材料电阻率迅速下降,成为导电材料,可以通过相当大密度的电流。图7:氧化锌半导体瓷的伏安特性 作用:氧化锌半导瓷的非线性电压电流关系。利用这种对称的非线性伏安特性可以制成各种电压限幅器、能量吸收装置等,如电力系统的过电压保护装置,特别是由于这类材料低电压下的电阻率高,因而在长期工作电压下漏电流小、发热小,可以做成不带火花间隙的高压避雷器;而高电压下电阻低、残压小,能把过电压限制在更低的水平上,使电网和电工设备的绝缘水平有可能降低,特别是在超高压电网,这一点更为重要。拓展:稀磁半导体材料(Diluted magnetic semiconductors,DMS)稀释磁性半导体简称稀磁半导体(Diluted Magneticsemi Conductors,DMS),是利用3d族过渡金属或4f族稀土金属的磁性离子替代Ⅱ2Ⅵ族、Ⅳ2Ⅵ族、Ⅱ2Ⅴ族或Ⅲ2Ⅴ族等化合物半导体中的部分非磁性阳离子而形成的新型半导体材料,又可称为半磁半导体(Semi Magnetic Semi Conductors,SMSC)材料或半导体自旋电子材料。之所以称为稀磁半导体是由于相对于普通的磁性材料,其磁性元素的含量较少。这类材料由于阳离子替代而存在局域磁性顺磁离子,具有很强的局域自旋磁矩。局域顺磁离子与迁移载流子(电子或空穴)之间的自旋2自旋相互作用结果产生一种新的交换相互作用,使得稀磁半导体具有很多与普通半导体截然不同的特殊性质,如磁性、显著的磁光效应和磁输运性质。稀磁半导体能利用电子的电荷特性和自旋特性,即兼具半导体材料和磁性材料的双重特性。它将半导体的信息处理与磁性材料的信息存储功能、半导体材料的优点和磁性材料的非易失性两者融合在一起,这种材料研制成功将是材料领域的革命性进展。同时,稀磁半导体在磁性物理学和半导体物理学之间架起了一道桥梁。ZnO作为一种宽带隙半导体,激子束缚能较高(60meV),具有温度稳定性好、光透过率高、化学性能稳定,原料丰富易得、价格低廉等优点,并且过渡金属离子易于掺杂,可制备性能良好的稀磁半导体,因而成为目前稀磁半导体材料的研究热点。 国内研究以及原理:近年来,由于1i掺杂的Zn()材料可能同时具有铁电性和铁磁性,国内很多研究者都对它进行了研究。南京大学的宋海岸等制备了Ni、I』i共掺的ZnO薄膜,发现由于Li掺杂引入了空穴,使铁磁性减弱 ]。北京航空航天大学的李建军等制备了I Co共掺的ZnO纳米颗粒,实验发现,当掺杂浓度少于9 时体系的铁磁性会增强,其原因是掺入后形成了填隙原子,电子浓度明显增加,使得束缚磁极子浓度增加,且磁极子之间容易发生重叠,最终导致铁磁耦合作用增强。武汉大学的C W Zou等制备了Mn、Li共掺杂的ZnO薄膜,研究了不同Mn掺杂浓度的ZnO样品。但这些研究中对Li、Mn共掺杂ZnO陶瓷的磁性研究并不常见。 应用现状与前景展望(1)改变组分获得所需的光谱效应通过改变磁性离子的浓度可得到所需要的带隙,从而获得相应的光谱效应。由于其响应波长可覆盖从紫外线到远红外线的宽范围波段,这种DMS是制备光电器件、光探测器和磁光器件的理想材料。在Ⅲ2Ⅴ族宽带隙稀磁半导体GaN中掺入不同的稀土磁性元素可发出从可见光到红外的不同波长的光,加上GaN本身可发紫外光,因此掺稀土GaN材料可发出从紫外到红外波段的光,如在GaN中掺Er可发绿光,而掺Pr可发红光等。1994年Wilson等[24]在掺Er的GaN薄膜中首次观察到1.54μm的红外光荧光。1998年Steckl等采用Er原位掺杂方法首次获得绿光发射[25],掺Er的GaN的另一个重要特性是其温度猝灭效应很弱,这对于制备室温发光器件非常重要。后来红光和蓝光器件相继研制成功,这些都可以作为光通信和光电集成的光源。(2)sp2d交换作用的应用利用DMS的巨法拉第旋转效应可制备非倒易光学器件,也可用于制备光调谐器、光开关和传感器件。DMS的磁光效应为光电子技术开辟了新的途径。利用其磁性离子和截流子自旋交换作用(sp2d作用)所引起的巨g因子效应,可制备一系列具有特殊性质的稀磁半导体超晶格和量子阱器件。这种量子阱和超晶格不仅具有普通量子阱和超晶格的电学、光学性质,而且还具有稀磁半导体的磁效应,因此器件具有很多潜在的应用价值。利用磁性和半导体性实现自旋的注入与输运,可造出新型的自旋电子器件,如自旋过滤器和自旋电子基发光二极管等。(3)深入研究自旋电子学,推动DMS的实用化自旋电子学是目前固体物理和电子学中的一个热点,其核心内容是利用和控制固体,尤其是半导体中的自旋自由度。近年来以稀磁半导体为代表的自旋电子学的研究相当活跃,各国科研机构和各大公司都投入了巨大财力和人力从事此领域的研究。利用具有磁性或自旋相关性质的DMS基材料可制出一类新型器件———既利用电子、空穴的电荷也利用它们的自旋。这些新材料和人造纳米结构,包括异质结构(HS)、量子阱(QW)和颗粒结构一直是一些新型功能的“沃土”———与自旋相关的输运、磁阻效应和磁光效应。自旋电子学可用于计算机的硬驱动,在计算机存储器中极具潜力。在高密度非易失性存储器、磁感应器和半导体电路的集成电路、光隔离器件和半导体激光器集成电路以及量子计算机等领域,DMS材料均有重大的潜在应用。但上述以稀磁半导体为基础的自旋电子器件的研制尚处于起步阶段,距实用化还有很长的路程。自旋电子学与自旋电子学器件研究的深入,将加深DMS机理的研究和理论的探索,推动DMS的实用化过程。(4)室温DMS的研究为了应用方便,需要开发高居里温度(Tc)的DMS材料(高于室温)。室温下具有磁性为磁性半导体的应用提供了可能。扩展更多的掺杂磁性元素或生长更多种类材料来提高DMS材料的居里温度是当前的首要问题。近来Hori等成功掺入5%Mn在GaN中,获得了高于室温的Tc报道表明(Zn,Co)O的居里温度可达到290~380K[26]。Dietl等[6]采用Zener模型对闪锌矿结构的磁半导体计算表明,GaMnN和ZnMnO具有高达室温的居里温度,该计算结果对实验研究提供了很好的理论依据。但是,如何将磁性和半导体属性有机地结合起来仍然是值得进一步研究的问题。

自然界中有 10 万种材料,其中约 5000 种是层状材料。如果将它两两组合或者三三组合,那么可能性远远大于 100 万种,其物理性质也大有不同。

“纳米积木”(原子层范德华纳米材料及其异质结构),就是把不同的层状材料的单层或少层分离出来,像搭积木一样,通过堆叠、旋转等方式,设计特定的形状或结构,形成一个自然界中不存在的 “人造晶体”。

山西大学光电研究所韩拯就是玩转 “纳米积木” 的一位年轻教授,他通过设计特殊的结构,借用传统半导体器件的范例,在微纳米尺度新型半导体结构,展示了二维层状材料垂直组装电子器件的诸多新奇物理现象。

韩拯和合作者首次利用二维原子晶体替代硅基场效应鳍式晶体管的道沟材料,在实验室规模演示了目前世界上沟道宽度最小的鳍式场效应晶体管,将沟道材料宽度减小至 0.6 纳米。同时,获得了最小间距为 50 纳米的单原子层沟道鳍片阵列。

此外,他带领的研究团队首次报道的二维本征铁磁半导体自旋场效应器件,为继续寻找室温本征二维铁磁半导体提供了指导意义。

图 | 《麻省理工 科技 评论》“35 岁以下 科技 创新 35 人” 2020 年中国区榜单入选者韩拯

凭借上述研究成果,韩拯成功入选 “35 岁以下 科技 创新 35 人”(Innovators Under 35)2020 年中国区榜单,获奖理由为用二维功能材料制造新型的纳米电子器件,以新型的原子层次制造路线突破半导体工艺,为后摩尔时代晶体管工艺寻找新方案。

铅笔芯的主要成分是石墨,是典型的范德华材料。由于石墨中碳原子层与层之间的范德华结合力较弱,在纸上写字过程当中笔尖上“蹭”下来的二维碳纳米片,就成为了宏观下人们看到的字迹。直到 2000 年左右,英国曼彻斯特科学家安德烈・海姆(Andre Geim,AG)和康斯坦丁・诺沃肖洛夫(Konstantin Novoselov)首次把石墨的单原子层(约 0.3nm 厚)分离了出来,并因此获得了 2010 年诺贝尔物理学奖。

韩拯以此为灵感,对物理、材料工程、微观世界等科学领域愈发好奇,这也跟他的成长经历息息相关。

韩拯是江苏人,本科考入吉林大学物理学院,开始核物理专业学习。之后考入中国科学院金属研究所材料学硕士专业。2010 年,他在法国国家科学中心 CNRS 下属的 NEEL 研究所攻读纳米电子学与纳米 科技 博士学位。其导师对于他的评价是:“年轻躁动、充满创新活力。”

之后他作为博士后,在美国哥伦比亚大学物理系,从事范德华人工异质结构的维纳器件量子霍尔效应和电子光学等物理性能研究。

“随着对自身行业的不断深入了解和研究,渐渐地进入了角色,也爱上了科研。” 韩拯告诉 DeepTech。

期间,他作为共同第一作者,完成了二维d道输运电子在 pn 结界面的负折射工作,为实现新的电子开关创造了基础,被 Physics World 杂志评为 2016 年度十大物理学突破之一。

在 2015 年 9 月,而立之年的韩拯决定回国,之后一直在中国科学院金属研究所开展新型人工纳米器件的量子输运调控研究。

对于他而言,在研究当中最享受和最开心的事莫过于,本来一个不太明白的事,不断地通过数据积累与同行讨论之后把它弄明白。

之后,韩拯团队以少数层二硫化钼为研究体系,利用超薄(少数原子层)的六方氮化硼(h-BN)作为范德华异质结的隧穿层,系统开展了隧穿晶体管器件研究。

图 | 硫化钼隧穿晶体管光学照片(比例尺 5 微米)、多工作组态整流效应、以及垂直方面切面图

通过在金属和半导体 MoS2 界面之间引入隧穿层 h-BN,可有效降低界面处的肖特基势垒,从而实现通过局域栅电极对通道 MoS2 费米能级的精确静电调控。所获得的 MoS2 隧穿晶体管仅通过门电压调控,即可实现具有不同功能的整流器件,包括 pn 二极管、全关、np 二极管、全开器件。

这项工作首次将双向可调的二极管和场效应管集成到单个纳米器件中,为未来超薄轻量化、柔性多工作组态的纳米器件提供了研究思路。

之所以选择纳米新材料这个方向,除了自身专业背景之外,更重要的是韩拯对科学一直抱有好奇心。

对此,韩拯表示:“硬盘的读写速率速度越来越跟不上 CPU 的运行速度,如果能把它俩合到一起去做存算一体,可以提高计算机的性能。最直接的方法就是把硅半导体与磁复合到一起,变成一个磁性半导体。”

韩拯团队采用惰性气氛下原子层厚度的垂直组装,发现 3.5nm 厚的 Cr2Ge2Te6 材料在铁磁居里温度以下能够保持优秀的载流子导通性,并且能够实现电子与空穴的双极场效应。该型纳米器件在门电压调控下,磁性亦能得到有效调控,并且与电输运相仿,存在双极门电压可调特性。

“磁性的来源是电子自旋和自旋之间的相互作用。目前,人们发现的室温铁磁性基本上要么在金属当中,要么在绝缘体当中,半导体的磁性很难维持到室温。科学家们一直在积极研究寻找室温下堪用的磁性半导体。” 韩拯告诉 DeepTech。

少数层 Cr2Ge2Te6 是目前已知的首个拥有内禀自旋和电荷态密度双重双极可调特性的二维纳米电子材料,这为继续寻找室温本征二维铁磁半导体提供了一定的指导意义。

例如,来自新加坡国立大学的研究团队在该研究基础上,进一步加强了离子掺杂胶的载流子浓度,将少数层 Cr2Ge2Te6 的铁磁居里温度增强了 4 倍,达到 250K(零下 25 摄氏度)温度。

除此之外,韩拯与合作者首次针对具有巨大面内电导率各向异性的二维材料碲化镓,通过垂直电场实现了对该各向异性电阻率比值的调控,从 10 倍调控至高达 5000 倍,该数值为目前已知二维材料领域里报道的最高记录。

这意味着发现了电子世界的 “交通新规”:在晶格传输过程中,受外电场的影响,电子的导电特性沿着不同方向表现出了一定的差异。

也就是说,如果将电子传输通道比喻成两条垂直的繁华街道。当没有电场时,一条是另一条通过率的 10 倍左右。一旦施加一定强度的外电场,这两条 “车道” 上的电子通过率差别可高达 5000 倍。

站在科幻角度来描述,这种材料可以制作成为一种新型各向异性存储器,当该存储器中一次性写入的数据,沿其中一个方向读取出来的是一本小说,而沿另一个方向读取出来的,则是一部电影。

发现的二维极限 GaTe 纳米电子器件展示出了门电压可调的、面内巨各向异性电阻效应(Giant Anisotropic Resistance),为实现新型各向异性逻辑运算、存储单元、以及神经元模拟器件等提供了可能。

之后,韩拯与合作者湖南大学刘松教授、金属研究所孙东明教授等人,首次提出了利用二维原子晶体替代硅基场效应晶体管 FinFET 的 fin 的沟道材料,通过模板生长结合多步刻蚀的方法,制备出了目前世界上沟道宽度最小的(0.6nm)鳍式场效应晶体管(FinFET),也是目前世界上最薄的鳍式晶体管。

FinFET 是一种为了解决由于进一步集成化需求,硅基平面场效应晶体管的尺寸被进一步缩小所引起的短沟道效应等问题,采用将沟道和栅极制备成 3D 竖直形态的鳍(fin)式晶体管。然而,受限于目前微纳加工的精度,报道的硅基 FinFET 沟道宽度最小约为 5nm。

该团队采用自下而上 Bottom-up 的湿法化学沉积,在高度数百纳米台阶状的模板牺牲层上连续保形生长单层二维原子晶体半导体,最终将 FinFET 的沟道材料宽度缩小至单原子层极限的亚纳米尺度(0.6 nm),几乎达到物理极限。

同时,采用多重刻蚀等微纳加工工艺,基于此制备演示了最小间距为 50 nm 的单原子层沟道鳍片阵列,为后摩尔时代的场效应晶体管器件的发展提供了新方案。

在工业界,尤其在半导体工业,大家都希望芯片的尺度越来越小,性能越来越高。FinFET可以把平面通道变成站立通道,这样就节约了大量的空间,如此一次就能在更小的面积里,储存更多的芯片或运算单元。

简单来讲,韩拯其主要研究的是功能材料在尺寸非常非常小的时候,有哪些有趣的物理性质和新奇的物理行为,并进一步利用这些有趣的物理现象,来组装制造成纳米尺度下的低功耗、多功能、智能化的小型电子器件。

事实上,一些范德华材料已经在例如透明柔性电子、能源催化等诸多性能方面超越了传统材料,具有诱人的发展前景。

“团队目前虽然以基础研究为主,但也正在逐渐努力从实验室走向应用,我们需要进一步在原始创新以及与应用研究交叉结合等方面多下功夫”。如何实现从零到一的创造发明,并不断加强研究的深度,将是韩拯团队后续工作中的首要目标。

“我们知道这很难,但是仍然要努力学习做一名孤独的研究者,一方面,是静下心来钻研的孤独,另一方面,则是在创新创造上独树一帜。” 韩拯告诉 DeepTech。

在下一阶段,韩拯表示将继续深耕纳米积木领域,专注在新原理、新结构、新制造方式等科学目标。用自下而上、原子层次制造的路线,与目前主流的自上而下半导体工艺相结合,从而展现更多的可能性。

相信在摩尔定律行将失效不久的将来,小尺寸的突破口,一定出现在纳米制造领域,例如自组装、生物模版、原子层次 3D 打印等等。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/5906017.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-07
下一篇 2023-03-07

发表评论

登录后才能评论

评论列表(0条)

保存