光刻机需要半导体陶瓷吗

光刻机需要半导体陶瓷吗,第1张

碳化硅陶瓷光刻机用精密陶瓷部件的首选材料

jensoil

道法自然

来自专栏半导体产业和投融资

本文来自中国粉体网

近几年,光刻机的确是个热词,不论业内业外,都对其非常关注,“有井水处即有光刻机”说的毫不夸张。据说有位半导体领域的专家去理发时,理发小哥也会滔滔不绝的和他交流光刻机。

而在材料领域,碳化硅的“火”有过之而无不及,其本身作为一种优良的陶瓷材料,性能与应用不断地被的开发,尤其是随着集成电路的快速发展,碳化硅作为第三代半导体材料更是一跃成为最受瞩目的材料之一。

光刻机和碳化硅之间又有什么神秘关系呢?

这还要从刚才讲到的集成电路说起。集成电路产业(即IC产业)是关乎国家经济、政治和国防安全的战略产业,在IC产业中,集成电路制造装备具有极其重要的战略地位。集成电路关键装备的发展除先进设计、精密控制技术外,关键零部件制备技术制约也是严重影响集成电路先进制造装备国产化进程的一大问题。

12英寸硅片用碳化硅真空吸盘

关键零部件具有举足轻重的作用,要求结构件材料具有高纯度、高致密度、高强度、高d性模量、高导热系数及低热膨胀系数等特点,且结构件要具有极高的尺寸精度和结构复杂性。例如在高端光刻机中,为实现高制程精度,需要广泛采用具有良好的功能复合性、结构稳定性、热稳定性、尺寸精度的陶瓷零部件,如E-chuck、Vacumm-chuck、Block、磁钢骨架水冷板、反射镜、导轨等。

碳化硅陶瓷正是光刻机用精密陶瓷部件的首选材料!

碳化硅陶瓷具有高的d性模量和比刚度,不易变形,并且具有较高的导热系数和低的热膨胀系数,热稳定性高,因此碳化硅陶瓷是一种优良的结构材料,目前已经广泛应用于航空、航天、石油化工、机械制造、核工业、微电子工业等领域。

但是,由于碳化硅是Si-C键很强的共价键化合物,具有极高的硬度和显著的脆性,精密加工难度大;此外,碳化硅熔点高,难以实现致密、近净尺寸烧结。因此,大尺寸、复杂异形中空结构的精密碳化硅结构件的制备难度较高,限制了碳化硅陶瓷在诸如集成电路这类的高端装备制造领域中的广泛应用。目前只有日本、美国等少数几个发达国家的少数企业(如日本的Kyocera、美国的CoorsTek等)成功地将碳化硅陶瓷材料应用于集成电路制造关键装备中,如光刻机用碳化硅工件台、导轨、反射镜、陶瓷吸盘、手臂等。

碳化硅工件台

光刻机中工件台主要负责完成曝光运动,要求实现高速、大行程、六自由度的纳米级超精密运动,如对于100nm分辨率、套刻精度为33nm和线宽为10nm的光刻机,其工件台定位精度要求达到10nm,掩模硅片同时步进和扫描速度分别达到150nm/s和120nm/s,掩模扫描速度接近500nm/s,并且要求工件台具有非常高的运动精度和平稳性。故需满足以下要求:

工件台及微动台(局部剖面)示意图

(1)高度轻量化:为降低运动惯量,减轻电机负载,提高运动效率、定位精度和稳定性,结构件普遍采用轻量化结构设计,其轻量化率为60%~80%,最高可达到90%;

(2)高形位精度:为实现高精度运动和定位,要求结构件具有极高的形位精度,平面度、平行度、垂直度要求小于1μm,形位精度要求小于5μm;

(3)高尺寸稳定性:为实现高精度运动和定位,要求结构件具有极高的尺寸稳定性,不易产生应变,且导热系数高、热膨胀系数低,不易产生大的尺寸变形;

(4)清洁无污染:要求结构件具有极低的摩擦系数,运动过程中动能损失小,且无磨削颗粒的污染。

碳化硅陶瓷方镜

光刻机等集成电路关键装备中的关键部件具有形状复杂、外形尺寸复杂以及中空轻量化结构等特点,制备此类碳化硅陶瓷零部件难度较大。目前国际主流集成电路装备制造商,如荷兰ASML,日本NIKON、CANON等公司大量采用微晶玻璃、堇青石等材料制备光刻机核心部件——方镜,而采用碳化硅陶瓷制备其他简单形状的高性能结构部件。中国建筑材料科学研究总院的专家们却采用专有制备技术,实现了大尺寸、复杂形状、高度轻量化、全封闭光刻机用碳化硅陶瓷方镜及其他结构功能光学零部件的制备。

碳化硅光罩薄膜

日前在韩国的一场半导体交流活动中,ASML韩国营销经理MyoungKuyLee透露,公司将开始供应透光率超90%的薄膜,以提升EUV光刻机的效率。ASML2016年首次开发出光罩薄膜,当时的透光率是78%。随后在2018年,薄膜透光率提升到80%,去年提升到85%。

薄膜用于保护光罩免受污染,单价2.6万美元左右(约合人民币16.78万元)。

另外,韩国企业FST、S&STech也都在紧张开发EUV光刻机所需的薄膜,FST此前预期上半年开始供应90%透光率的碳化硅薄膜。

碳化硅陶瓷精密结构部件制备工艺

中国建材总院在近净尺寸成型工艺——凝胶注模成型的基础上,开发出用于制备新型大尺寸、复杂形状、高精度碳化硅陶瓷部件的工艺技术。

碳化硅陶瓷部件制备工艺流程图

该制备流程中的关键工艺包括凝胶注模成型工艺、陶瓷素坯加工工艺和陶瓷素坯连接工艺。其中,凝胶注成型工艺是制备碳化硅陶瓷部件的基础,该工艺是一种精细的胶态成型工艺(Colloidalprocessing),可实现大尺寸、复杂结构坯体的高强度、高均匀性、近净尺寸成型,自上世纪90年代以来在特种陶瓷材料制备领域获得了广泛的研究。陶瓷素坯加工工艺可以实现复杂形状陶瓷部件的快速、低成本、精密制造,有效提高陶瓷部件的尺寸精度及表面光洁度。陶瓷素坯连接工艺则可以实现中空陶瓷部件的制备,主要采用陶瓷粘结剂将陶瓷单体部件进行连接获得整体中空部件。

产业竞争格局

目前国外在集成电路核心装备用精密陶瓷结构件的研发和应用方面走在前列的公司有日本京瓷、美国CoorsTek、德国BERLINERGLAS等,其中,京瓷和CoorsTek公司占据了集成电路核心装备用高端精密陶瓷结构件市场份额的70%。

京瓷及CoorsTek制造的高端陶瓷零部件具有材料体系齐全、性能优异、结构复杂、加工精度高等特点,所制造的精密陶瓷结构件几乎涵盖了现有结构陶瓷材料体系,如氧化铝、碳化硅、氮化硅、氮化铝等;结构件的应用领域也几乎覆盖了全部集成电路核心装备,形成了一系列型号齐全、品种多样的精密陶瓷结构件产品,如美国CoorsTek公司能够提供光刻机专用组件、等离子刻蚀设备专用组件、PVD/CVD专用组件、离子注入设备专用组件、晶片吸附固定传输专用组件等一系列产品;京瓷能够提供光刻机、晶圆制造设备、刻蚀机、沉积设备(CVD、溅射)、LCD等装备用精密陶瓷结构件。我国在集成电路核心装备用精密陶瓷结构件的研发和应用方面起步较晚,在大尺寸、高精度、中空、闭孔、轻量化结构的结构陶瓷零部件的制备领域有诸多关键技术问题有待突破。

结束语

碳化硅陶瓷具有优良的常温力学性能(如高强度、高硬度、高d性模量等)、优异的高温稳定性(如高导热系数、低热膨胀系数等)以及良好的比刚度和光学加工性能,特别适合用于制备光刻机等集成电路装备用精密陶瓷结构件,如用于光刻机中的精密运动工件台、骨架、吸盘、水冷板以及精密测量反射镜、光栅等陶瓷结构件等。

留学美国申请美国大学材料科学专业,首先需要了解美国大学材料学专业研究方向。美国大学材料学专业基本有四大类,这里我们就为对材料科学专业有兴趣的朋友详细介绍一下这四个研究方向:无机非金属材料无机非金属材料是三大基础材料之一,包括结构陶瓷、功能陶瓷、日用陶瓷,耐火材料、玻璃、水泥等。研究内容主要包括固体电解质材料的制备,结构和性能研究结构陶瓷的制备,组织结构和性能的研究磁性材料、电性材料、压电陶瓷、半导体陶瓷等功能材料的制备和研究古陶瓷和日用陶瓷的研究和开发。高温陶瓷、耐火材料的制备和开发等。在申请过程中,一般来说GPA至少要达到3.0,基于申请MASTER,还是PHD的前提下,每个学校可能会不同学位的申请对GPA有特殊的要求。比如1-30档次的学校,大学Admission里要求IBT:100以上,GRE:总分1300以上,对verbal都会有单项要求,Research Experiences和Internship必须有一定的含金量比如50-70档次的学校,IBT:90以上,GRE:总分1200以上,及部分学校对verbal单项也是有要求,Research Experiences和Internship尽量多的去参与和自己专业相关的项目,比如100-120等级的学校,IBT:至少80以上,GRE:至少1150以上,Research Experiences和Internship有会对申请有一定促进作用,不同等级的学校在要求上会有所不同,这个专业申请的人数相对于申请金属材料的人略多一点,目前该专业就业状况供求基本平衡,但在从事更高层次的材料人才却严重短缺,因此总体来讲还是有很大的施展才华的空间。对于申请PHD的学生,争取能够发表PAPER,对申请也会有很大帮助。对于部分硬件条件一般的,可以在软件背景上来提升,弥补硬件的差距。对于本科生申请,GPA,,G,T成绩比较重要。金属材料金属材料是最重要的工程材料,包括金属和以金属为基的合金。通过对金属材料制备工艺及其原理的探索,将研究成果直接应用于现实生产是这一学科的主要目的。在申请过程中,一般来说GPA达到3.2左右,基于这样的前提下,每个档次的学校对G,T成绩都有着不同的要求。比如1-30档次的学校,需要IBT:105左右,GRE:1350左右,Research Experiences和Internship尽量丰富比如50-70档次的学校,需要IBT:90左右,GRE:1250左右,Research Experiences和Internship较为丰富比如100-120档次的学校,需要IBT:80左右,GRE:1200左右,Research Experiences和Internship有一定的实验经历就可以(这些主要是针对本科生)。所以,不同档次的学校在要求上会有所不同,这个专业申请的人数相对于无机材料并不是非常得多,竞争相对小一些,奖学金得到的几率取决于自身的条件挂钩。关于未来的就业方向,大多数人会选择继续深入研究。电子信息材料电子信息材料是材料科学与当今信息时代重要的交叉学科之一,与当今世界迅速发展的信息技术密切相关,又有着极其广阔的发展前景 专业方向指在微电子、光电子技术等领域中所用的材料,主要包括半导体微电子材料光电子材料,电子陶瓷材料,磁性材料光纤通信材料,存储材料压电晶体与薄膜材料,绿色电池材料等。其研究内容非常广泛,包含了柔性晶体管、光子晶体、SiC、GaN、ZnSe等宽带半导体材料为代表的第三代半导体材料、有机显示材料以及各种纳米电子材料等。电子信息材料是现在材料科学中最大的热门,所以申请人数也是最多的,竞争也就最为激烈。此专业发展非常迅速,尤其以半导体产业的发展为例,所以就业前景一片光明。因此申请难度也是最大的,不管是从硬件条件和软件条件都有很高的要求,申请者需要具备很强的背景。同事具备系统的材料物理学理论基础和熟练的实验技能,有扎实的数学、物理、外语、电子学和计算机科学基础。建议客户抽空去了解下美国大学对这专业的介绍,和课程设置,多去了解教授现在所做的project,可以有目的性的选择自己将要进行的研究,对日后的申请会有很大作用。可能申请前所需要做的工作会比较多,比较艰苦,但是在这种竞争激烈,日后就业率高的专业中,争取到自己理想的录取,是完全值得之前的努力的。综合上面的专业分析,我们可以看出Materials Science&Engineering在2008的美国申请专业中会继续热门,越来越多的学生会了解MSE专业的发展趋势和就业优势。因此建议申请者在选校时,一定要根据自己的自身条件,给自己找个合适的定位,这对申请结果有很大的关系。总结以往的经验来看,不建议客户申请大众情人校,比如说普度,明尼苏达等等,首先这些学校申请者比较多,竞争非常激烈,申请奖学金难度比较高。也不建议客户申请那种注重硬件的学校,这种学校往往会忽略学生的潜力,第一轮只是参照硬件条件来筛选,会让部分研究背景很强但是硬件条件一般的申请者吃亏。比如OHIO STATE UNIVERSITY就是这种情况。所以这些情况的学校,不建议定在主申学校里。申请大可以尝试申请几所冷门学校,这些冷门学校可能专排比较靠前,但是综排比较靠后,比如说University of Houston理工科很不错,理工科各专业排名都比较好,但是综排却在200左右,所以申请者不要一味的追求综合排名,这样很可能忽略一些最适合自己的学校。最后希望出自国内名校的申请者,可以多去像已经出去的师兄和师姐或者导师了解,哪些学校对你所在的学校比较有好,哪些人对本校的学校态度比较好,尝试申请这些美国大学和国内普通大学的申请者来比,还是有一定的优势的。高分子材料高分子材料是当今世界发展最迅速的产业之一,高分子材料已广泛应用到电子信息、生物医药、航天航空、汽车工业、包装、建筑等各个领域。研究内容包括活性聚合、新材料的合成与开发、聚合物结构与性能、反应性加工、先进复合材料及应用、超细材料及纳米材料、生物材料、新型功能材料、化学建材和化学纤维等。由于高分子材料发展十分迅速,所以申请这个专业的人数也稍微偏多,竞争相对激烈。在就业方面可以从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作,就业前景很不错。所以美国大学的录取要求相对别的专业都会有所提高。一般来说需要物理或者化学以及跟高分子交叉的专业背景,GPA至少达到3.4以上,G平均分:Q760 T平均分88,(美国牛校会比平均分高),在申请过程中才会有一定的竞争力。申请高分子材料PHD的学生,如果拿到MASTER学位,申请中美国大学看重Research Experiences和Internship,多于看申请者硬件条件,所以硬件条件一般的学生可以在Research Experiences和Internship以及PAPER上多下功夫。本科生申请PHD学位,既要在保证硬件条件很好的情况下,尽可能的去多做项目,多进实验室,为自己的RESUME积累素材。关于奖学金,PHD的拿奖率大于MASTER,所以学习时间会比较长,但是这个专业的回报率还是比较高的。通过上面对美国大学材料专业的四大研究领域的介绍,相信对于那些计划去美国读研究生的人来说,可以通过上述的信息来选择专业方向和院校。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/5913281.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-08
下一篇 2023-03-08

发表评论

登录后才能评论

评论列表(0条)

保存