纳米材料的表征手段有哪些?

纳米材料的表征手段有哪些?,第1张

1、形貌,电子显微镜(TEM),普通的是电子q发射光电子,还有场发射的,分辨率和适应性更好。

2、结构,一般是需要光电电子显微镜,扫描电子显微镜不行。

3、晶形,单晶衍射仪,XRD,判断纳米粒子的晶形及结晶度。

4、组成,一般是红外,结合四大谱图,判断核壳组成,只作为佐证。

5、性能,光,紫外,荧光;电原子力显微镜,拉曼;磁原子力显微镜或者专用的仪器。

扩展资料

纳米结构:纳米结构包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。

而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。

参考资料来源:百度百科-纳米材料

纳米级结构材料简称为纳米材料,广义上是三维空间中至少有一维处于纳米尺度范围超精细颗粒材料的总称。根据2011年10月18日欧盟委员会通过的定义,纳米材料是一种由基本颗粒组成的粉状、团块状的天然或人工材料,这一基本粒的一个或多个维度尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。纳米级结构材料简称为纳米材料(nanometermaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nanoparticle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。 纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。纳米粒子的粒径(10纳米~100纳米)小于光波的长,因此将与入射光产生复杂的交互作用。金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成高反射率光泽面成强烈对比。纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。

华为新专利引各国热议

据报道,华为宣布成功拿下了石墨烯晶体管专利,该专利还涉及了半导体领域,而这些技术的出现标志着中国在芯片研究领域进入了一个新的阶段。

石墨烯晶体管在石墨烯芯片研发上更是起着至关重要的作用,它能够提高电子的传输速度,同时有效增加芯片元件和器件的输出电阻,从而最大限度地提高射频性能。并且石墨烯芯片其独特的结构可以让雕刻呈现立体样式,这也极大地增加了芯片性能,现在华为宣布这项技术专利申请成功,无疑是国产芯片一个崭新的开始。

石墨烯芯片意义重大

石墨烯芯片的出现很可能将会彻底推动我国在半导体芯片研发中更进一步,而这种技术被我国掌握,也将会成为我国与美国 科技 对决中的一个“重大武器”。要知道目前市面上最常见的传统芯片遵循着一个定律——摩尔定律,早在半导体芯片研发之后,研发芯片的工程师曾经出过预言,日后每隔18-24个月,集成电路上可容纳的元器件的数目增加一倍,性能也将提升一倍。

这一预言对于传统芯片来说好比是一个诅咒,这意味着当集成电路上可容纳的元件数目达到一定数值时,传统芯片便很难有发展的前景。而随后石墨烯晶体的发现给人们提供了一个新的思路,但将想法变为现实的过程十分艰难,美国截至目前为止依旧没有攻破这一技术。

半导体芯片将迎来改革

现如今中国除了已经掌握石墨烯技术外,2020年5月北大团队制造出了纯度高达99.99%的碳纳米管阵列,其运转速度相较国外更快、耗能更低,相比较之下整整减少了三成耗能。据悉,碳纳米管阵列因为其优秀的性能,可以在更多的领域应用,不仅在人工智能、卫星定位等方面可以起到重要作用,同时在医疗设备、国防 科技 方面也有很大的用处。

有专家预测这种载流子迁移率和稳定性更高的碳纳米管阵列很可能将会取代传统的硅晶片,而石墨烯材料的出现更是为中国芯片铺垫了基础,届时中国势必会成为该领域的领头羊。

虽然我国在芯片技术制造工业中与美国还有不可逾越的鸿沟,但是我国芯片研发技术一直名列前茅,此次华为成功掌握石墨烯晶体管制造技术,也进一步证明我国完全有实力反超美国,现在所需要的只是时间。相信随着越来越多技术的突破,中国在芯片制造业也会取得进展,届时我国将会建立属于自己的芯片产业链,美国也无法再利用同样的手段限制中国。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/5921079.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-08
下一篇 2023-03-08

发表评论

登录后才能评论

评论列表(0条)

保存