能带的结构简介

能带的结构简介,第1张

固体材料的能带结构由多条能带组成,能带分为传导带(简称导带)、价电带(简称价带)和禁带等,导带和价带间的空隙称为能隙。

能带结构可以解释固体中导体、半导体、绝缘体三大类区别的由来。材料的导电性是由“传导带”中含有的电子数量决定。当电子从“价带”获得能量而跳跃至“传导带”时,电子就可以在带间任意移动而导电。

一般常见的金属材料,因为其传导带与价带之间的“能隙”非常小,在室温下 电子很容易获得能量而跳跃至传导带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 所有固体物质都是由原子组成的,而原子则由原子核和电子组成。原子核外的电子在以原子核为中心的圆形轨道上运动,距离原子核越远的轨道其能级(电位能的级别)越高,电子也就越容易脱离原子的束缚,变成可以运动的自由电子。这有点像手上的风筝,放得越高,其运动能量越大,挣脱线的束缚的可能性越大。所以,最外层的电子最活跃,决定了与其他原子结合的方式(化学键),决定了该元素的化学性质,也就决定了该原子的价值,因此被称作为“价电子”。以硅原子为例,其原子核外有14个电子,以“2、8、4”的数量分布在三个轨道上,里面2和8个电子是稳定的,而外部的4个电子状态容易发生变化,因此其物理、化学特性就与它的4个价电子强相关。原子的电子状态决定了物质的导电特性,而能带就是在半导体物理中用来表征电子状态的一个概念。在固体电子学中有一套能带理论,便于研究固体(包括半导体)物质内部微观世界的规律。

当原子处于孤立状态时,其电子能级可以用一根线来表示;当若干原子相互靠近时,能级组成一束线;当大量原子共存于内部结构规律的晶体中时,密集的能级就变成了带状,即能带。能带中的电子按能量从低到高的顺序依次占据能级。下面是绝缘体、半导体和金属导体的能带结构示意图。最下面的是价带,是在存在电子的能带中,能量最高的带;最上面是导带,一般是空着的;价带与导带之间不存在能级的能量范围就叫做禁带,禁带的宽度叫做带隙(能隙)。绝缘体的带隙很宽,电子很难跃迁到导带形成电流,因此绝缘体不导电。金属导体只是价带的下部能级被电子填满,上部可能未满,或者跟导带有一定的重叠区域,电子可以自由运动,即使没有重叠,其带隙也是非常窄的,因此很容易导电。而半导体的带隙宽度介于绝缘体和导体之间,其价带是填满的,导带是空的,如果受热或受到光线、电子射线的照射获得能量,就很容易跃迁到导带中,这就是半导体导电并且其导电性能可被改变的原理。

由于半导体的带隙窄,电子容易发生跃迁,因而导电性能容易发生大的变化;电子状态的变化还可能带来其他效应,比如从高能级到低能级跃迁过程中多余的能量以光子的形式释放,则产生“发光”现象。独特的能带结构,正是半导体具有百变魔力之源。

如何考察结构能带

如何考察一个能带(DOS)结构和复杂的相互作用 Part 1 Electric conductivity and Band structures

固体计算最终结果将以能带结构展示出来,关于能带结构,固体中化学键分析,轨道之间的相互作用的解释等是一个复杂的过程,这里只是简单的根据本人的经验对此作定性的描述. 根据Fermi面附近能带的分布情况,固体分为绝缘体(insulator),半导体(semi-conductor),导体(conductor),导体比较典型的是金属,能带在Fermi面附近是连续分布,主要由于金属d,s以及p轨道之间能级重叠导致了Fermi面能带的联系分布,金属电导的好坏不仅仅是看Fermi附近是不是存在可供电子跃迁的能级,还要看这些能级是不是扩展态(extended or delocalized states),如果是定域态(localized)那么及时Fermi附近呈现Metallic特性,电导不会比金属好,比如过渡金属化合物电导就要比金属本身差很多。过渡金属本身电导也会受到d轨道扩展程度的影响,比如3d系列Fe,Co,Ni等电导率不是很大,比起Cu,Ag等就差的远了,对于Fe等金属Fermi面主要陈分是3d轨道,而对于Cu和Ag,由于3d(4d)轨道已经成满层排列,因此Fermi面落在了扩展的s轨道上面,这些轨道上的电子类似于自由电子气,能带呈现抛物线的形式,E(k)=h^2k^2/2me具有比较高的电导率,相反Fe等的3d轨道成分也可以分为巡游电子(自由电子,轨道为扩展性,能带呈现抛物线特点)和定域轨道两类,定于轨道能带在k空间是离域的,色散关系比较平直,但在晶体实空间内高度的定域,受到原子核的Coulomb吸引作用比较强烈,难以发生迁移,因此如果填充电子落在这些d轨道上面,电导性会大大降低。当然具体取决于DOS或者能带是如何分布的,这个和晶体结构有关系。在一些化合物中如TiC等结构中,Fermi面最后落在以C2p轨道为主要成分的能带上面,p轨道主要参与结构共价键形成,这些电子能级一般定域在Ti和C原子周围,电子处于紧束缚状态,难以在外加电场下发生迁移,因此这时候化合物的电导会进一步下降。 Part 2 关于半导体能带的特点:

半导体能带类似于绝缘体,区别在于带隙数值,一般认为宽带隙半导体的能带最大在4eV左右。如果比这个更大,可以认为是绝缘体。半导体能带主要分成三个部分:valence band, band gap, conduction band。

Valence band:主要由电负性较大的原子组成,如InP,价带主要是P的3s,3p轨道,导带一般是金属原子组成,如In的s,p轨道等。从化学键角度考虑,价带一般是Bonding,当然也有部分结构表现出Anti-bonding状态。

同质P-N结的能带结构图是如何得出的

p-n结基本概念是解决许多微电子和光电子器件的物理基础。对于许多半导场器件问题的理解不够深透,归根到底还在于对于p-n结概念的认识尚有模糊之处的缘故。

因为p-n结的一个重要特点就是其中存在有电场很强的空间电荷区,故p-n结的形成机理,关键也就在于空间电荷区的形成问题;p-n结的能带也就反映了空间电荷区中电场的作用。

(1) 载流子的转移:

p型半导体和n型半导体在此需要考虑的两个不同点即为(见图(a)):①功函数W不同;②主要(多数)载流子种类不同。因此,当p型半导体和n型半导体紧密结合而成的一个体系——p-n结时,为了达到热平衡状态(即无能量转移的动态平衡状态),就会出现载流子的转移:电子从功函数小的半导体发射到功函数大的半导体去,或者载流子从浓度大的一边扩散到浓度小的一边去。对于同质结而言,载流子的转移机理主要是浓度梯度所引起的扩散;对于异质结(例如Si-Ge异质结,金属-半导体接触)而言,载流子的转移机理则主要是功函数不同所引起的热发射。

(2) 空间电荷和内建电场的产生:

现在考虑同质p-n结的形成:在p型半导体与n型半导体的接触边缘附近处(即冶金学界面附近处),当有空穴从p型半导体扩散到n型半导体一边去了之后,就在n型半导体中增加了正电荷,同时在p型半导体中减少了正电荷,从而也就在p型半导体中留下了不能移动的电离受主中心——负离子中心;与此同时,当有电子从n型半导体扩散到p型半导体一边去了之后,就在p型半导体中增加了负电荷,同时在n型半导体中减少了负电荷,从而也就在n型半导体中留下了不能移动的电离施主中心——正离子中心。这就意味着,在p型半导体一边多出了负电荷(由电离受主中心和电子所提供),在n型半导体一边多出了正电荷(由电离施主中心和空穴所提供),这些由电离杂质中心和载流子所提供的多余电荷即称为空间电荷,它们都局限于接触边缘附近处,以电偶极层的形式存在,如图(b)所示。

由于在两种半导体接触边缘的附近处存在着正、负空间电荷分列两边的偶极层,所以就产生出一个从n型半导体指向p型半导体的电场,称为内建电场。在此,内建电场仅局限于空间电荷区范围以内,在空间电荷区以外都是不存在电场的电中性区。

至于势垒区中内建电场的分布形式,决定于空间电荷的分布,主要是决定于掺杂浓度的分布。对于掺杂浓度在p-n结冶金学界面处突然改变者,称为突变结,其中内建电场在势垒区两边的分布基本上是线性分布;对于掺杂浓度在p-n结冶金学界面处线性地改变者,称为线性缓变结,其中内建电场的分布近似为亚抛物线分布。

(3) p-n结的势垒和能带:

因为在p-n结界面附近处存在着内建电场,而该内建电场的方向正好是阻挡着空穴进一步从p型半导体扩散到n型半导体去,同时也阻挡着电子从n型半导体进一步扩散到p型半导体去。于是从能量上来看,由于空间电荷-内建电场的出现,就使得电子在p型半导体一边的能量提高了,同时空穴在n型半导体一边的能量也提高了;而在界面附近处产生出了一个阻挡载流子进一步扩散的势垒——p-n结势垒。根据内建电场所引起的这种能量变化关系,即可画出p-n结的能带图,如图(c)所示。在达到热平衡之后,两边的Fermi能级(EF)是拉平(统一)的。能带的倾斜就表示著电场的存在。

①势垒高度:

实际上,在p-n结界面处的内建电场就使得p型半导体与n型半导体之间产生了电位差——内建电势差(或内建电压)。电场越强,内建电势差就越大。此内建电势差所对应的能量差(能量差=电势差×电子电荷),即为p-n结的势垒高度。虽然势垒高度并不直接反映的......

band structure图怎么看

MS

计算能带图分析

能带图的横座标是在模型对称性基础上取的

K

点。为什么要取

K

点呢?因为晶体的周

期性使得薛定谔方程的解也具有了周期性。按照对称性取

K

点,可以保证以最小的计算量

获得最全的能量特征解。能带图横座标是

K

点,其实就是倒格空间中的几何点。其中最重

要也最简单的就是

gamma

那个点,因为这个点在任何几何结构中都具有对称性,所以在

castep

里,有个最简单的

K

点选择,就是那个

gamma

选项。纵座标是能量。那么能带图应

该就是表示了研究体系中,各个具有对称性位置的点的能量。

我们所得到的体系总能量,

该就是整个体系各个点能量的加和。

记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个

带。通过能带图,能把价带和导带看出来。在

castep

里,分析能带结构的时候给定

scissors

这个选项某个值,

就可以加大价带和导带之间的空隙,

把绝缘体的价带和导带清楚地区分出

来。

DOS

叫态密度,也就是体系各个状态的密度,各个能量状态的密度。从

DOS

图也可以

清晰地看出带隙、价带、导带的位置。要理解

DOS

,需要将能带图和

DOS

结合起来。分析

的时候,如果选择了

full

,就会把体系的总态密度显示出来,如果选择了

PDOS

,就可以分

别把体系的

s

p

d

f

状态的态密度分别显示出来。还有一点要注意的是,如果在分析的

时候你选择了单个原子,

那么显示出来的就是这个原子的态密度。

否则显示的就是整个体系

原子的态密度。要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。

最后还有一点,这里所有的能带图和

DOS

的讨论都是针对体系中的所有电子展开的。研究

的是体系中所有电子的能量状态。

根据量子力学假设,

由于原子核的质量远远大于电子,

此奥本海默假设原子核是静止不动的,

电子围绕原子核以某一概率在某个时刻出现。

我们经

常提到的总能量,就是体系电子的总能量。

这些是我看书的体会,不一定准确,大家多多批评啊!

摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若

干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性

/

定量的

讨论:

1

、电荷密度图(

charge density

2

、能带结构(

Energy Band Structure

3

、态密度(

Density of States

,简称

DOS

电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员

来讲不会有任何的疑问。

唯一需要注意的就是这种分析的种种衍生形式,

比如差分电荷密图

def-ormation charge density

)和二次差分图(

difference charge density

)等等,加自旋极化

的工作还可能有自旋极化电荷密度图(

spin-polarized

charge

density

。所谓

差分

是指原子

组成体系(团簇)之后电荷的重新分布,

二次

是指同一个体系化学成分或者几何构型改变

之后电荷的重新分布,

因此通过这种差分图可以很直观地看出体系中个原子的成键情况。

过电荷聚集(

accumulation

/

损失(

depletion

)的具体空间分布,看成键的极性强弱;通过

某格点附近的电荷分布形状判断成键的轨道

(这个主要是对

d

轨道的分析,

对......

如何画异质结的能带结构示意图,急求

没有明确的统一规定,一般你可模拟画个投影的外形,然后必须得有吊车的作业半径,就是多大吨位的半径(主勾、付勾的),证明你布置正确!不能和其它吊车、建筑物相撞,有能和本建筑有一很好的链接(有的塔吊还要与建筑有一临时支撑等)

我想画文献里的那种能带结构图。。。有办法吗?用软件画 10分

这要看你需要画的是什么图了,不同的图有特殊的要求。如果仅仅是普通的框架,word就可以了,要是什么设计之类的就是CAD,立体图那就多了,p顶o/E,3Dmax,MATLAB之类的,很多,总之要找到合适的,不知道你要画那种图了,呵呵

电子的能量为什么能得到不同的能带图

同质P-N结的能带结构图的得出方法如下:

因为在p-n结界面附近处存在着内建电场,而该内建电场的方向正好是阻挡着空穴进一步从p型半导体扩散到n型半导体去,同时也阻挡着电子从n型半导体进一步扩散到p型半导体去。于是从能量上来看,由于空间电荷-内建电场的出现,就使得电子在p型半导体一边的能量提高了,同时空穴在n型半导体一边的能量也提高了;而在界面附近处产生出了一个阻挡载流子进一步扩散的势垒——p-n结势垒。根据内建电场所引起的这种能量变化关系,即可画出p-n结的能带图。在达到热平衡之后,两边的Fermi能级(EF)是拉平(统一)的。能带的倾斜就表示著电场的存在。

P-N结的定义:

采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。PN结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。

导体和半导体区别是:

通俗的说:金属作为导体是没有禁带这一说的,电子可以随意的在其中传输。但半导体不同,本身有一个势垒,电子必须要吸收能量后才能在其中传输。半金属是说它是一种半导体,但势垒很小,电子很容易就可以被激发。

打个不恰当的比方,想象电子是个球,往前运动。金属就是一个平地,半导体是个高台,绝缘体是这个高台顶天了,半金属是这个高台只有薄薄的一层。二者的区别还是来自于能带结构的不同。根据能带理论

根据价带与导带之间的间隔从窄到宽,固体可以依次分为金属、半金属、半导体和绝缘体。对于半导体和绝缘体,导带和价带之间的间隔相对较大,使得费米能级附近电子的态密度等于零,称为带隙。先说半导体。

这个概念没什么疑议,即价带和导带之间存在带隙,一般在1~3eV,通过热激发或者施加外电场可以使电子从价带跃迁至导带。半金属,在英文中对应两个侧重点不同的词,semimetal和half-metal。

半金属(semimetal)是指价带和导带之间相隔很窄的材料。由于导带和价带之间的间隔十分小,使得费米能级附近电子的态密度接近于零。半金属(half-metal)是指对于自旋为某一方向的电子表现为导体。

但是对于自旋为另一方向的电子表现为半导体或绝缘体的材料。所有半金属都是铁磁性或亚铁磁性的,但是大多数铁磁性或亚铁磁性的材料都不是半金属。许多已知的半金属都属于氧化物、硫化物或赫斯勒合金。

有人建议把half-metal翻译成“半极性金属”(或“半极金属”)以示与semimetal的区别,但文献中大多依旧两种都称作半金属。传张能带图,有助于理解。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/5922497.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-08
下一篇 2023-03-08

发表评论

登录后才能评论

评论列表(0条)

保存