半导体器件常用的仿真模拟软件有什么? 有comsol,还有哪些? 以及它们的优缺点或互补。

半导体器件常用的仿真模拟软件有什么? 有comsol,还有哪些? 以及它们的优缺点或互补。,第1张

楼主的提问,就有点带偏别人的感觉,或者,你已经被别人带偏了。

首先,半导体是一门非常专业的学科,半导体器件仿真肯定需要专业的仿真软件,而通用CAE类的软件是无法解决大多数技术细节问题的,comsol, ansys,abaqus,就是通用CAE软件,据我了解前者在低频电磁,电化学,这一块还可以;中者,包含了很多软件,体系庞大却没好好消化,对这个了解的少,不发表意见;后者,材料,结构、岩土用的多;

其次,半导体器件仿真,这行业里站在高处的大牛,还是用TCAD类的软件较多,可以了解下国内主要做半导体的单位,高校、研究所、企业,基本上都是用这些软件,Synopsys的算一个,Crosslight算一个,NEXTNANO算一个,,,,,等等,其实很简单,你把这些软件放在网上一搜别人做的成果就知道哪些软件用的多,出的成果多;

不过,像Synopsys这类自己就做半导体的这类厂家,考虑到知识产权和保密问题,有一定的知识壁垒,所以这类的软件傻贵傻贵。NEXTNANO算是比较学术的一个,很久之前是开源的,现在借助他们的学校和研究所,正在走商业化,毕竟要存活嘛;

如果要学习TCAD软件也不容易啊,运气好的话,可以碰到技术比较过硬,而且还靠谱的厂家或者工程师,还会多帮忙指导指导;如果碰到只顾卖产品,无技术服务,那就惨了,,,,此为后话,一定要擦亮双眼,多做技术沟通和交流。很多技术型的公司非常乐意做技术交流的,双方互相学习共同提高嘛。

国内自己的自主研发的半导体软件,极少啊;国内做大型的工程计算软件,毕竟在前期缺少了知识储备和经验积累,现在别人制裁,就没辙了,哎,扯远了........

▲第一作者:许适溥,付会霞;通讯作者:彭海琳 通讯单位:北京大学

论文DOI:10.1002/anie.202006745

本工作将二维高迁移率半导体Bi2O2Se晶体应用于亚ppm范围痕量氧的高选择性和高稳定性的室温检测。利用扫描隧道显微镜(STM)、原位X射线光电子能谱技术(原位XPS)、以及霍尔器件的表征,并结合第一性原理的计算,阐明了二维Bi2O2Se对痕量氧高性能检测的机制。研究发现,二维Bi2O2Se表面暴露于氧时,形成高比表面积的非晶Se重构原子层,可有效吸附氧,二维Bi2O2Se半导体的迁移率和费米能级得以有效调制而改变其电导率;此外,二维Bi2O2Se阵列式氧传感器具有增强的信噪比,可实现低于0.25 ppm浓度氧的检测。

A. 痕量氧传感的发展趋势

当前,痕量氧传感在生物检测、能源、化工、智能制造等众多领域有着广泛的应用。商用的电化学型氧传感器利用氧气在隔膜材料两侧产生的浓差电动势输出信号,其构型复杂,难以微型化。相较而言,电阻型氧传感器的核心结构是一个由传感材料构成的两端电阻,结构大大简化,十分有利于集成化应用。二维材料因其巨大的比表面积和较高的迁移率,可以进一步增强电阻型氧传感器的性能。当前已有文献报道二维MoS2具有较好的氧传感能力,可以实现对浓度为10 %左右氧气的探测。但是,对痕量氧(ppm级)的检测目前仍然是一个重大挑战,其主要原因是MoS2这类材料的表面的活性位点很少,对痕量氧气的吸附能力不足。为从根本上解决这个问题,需要从材料本身的原子和能带结构出发,设计和制备具有丰富活性位点的二维材料基氧传感器。

B. 高迁移率二维半导体材料—Bi2O2Se的引入

2017年,北京大学彭海琳课题组首次报道了具有高迁移率的二维Bi2O2Se晶体。不同于多数二维材料,二维Bi2O2Se的层状结构由[Se]n2n- 和 [Bi2O2]n2n+离子层构成。基于晶圆级的高质量二维Bi2O2Se生长技术,该课题组已将这种材料成功应用到各种高速低功耗电子器件和量子输运器件中,取得了优异的器件性能( Nat. Nanotech. 2017 , 12 , 530 Nano Lett. 2017 , 17 , 3021 Adv. Mater. 2017 , 29 , 1704060 Nat. Commun. 2018 , 9 , 3311 Sci. Adv. 2018 , 4 , eaat8355 Nano Lett. 2019 , 19 , 2148 Adv. Mater. 2019 , 31 , 1901964 J. Am. Chem. Soc. 2020 , 142 , 2726)。二维Bi2O2Se材料独特的晶体结构,超高的迁移率(2000 cm2V-1s-1以上)和合适的带隙(0.8 eV)使其成为潜在的高灵敏度氧传感材料。

研究的核心问题:对Bi2O2Se表界面进行调控,使其产生更多的吸附活性位点,达到ppm级的氧气检测灵敏度。

本研究从二维Bi2O2Se晶体的表界面结构设计和能带工程的角度出发,旨在实现亚ppm范围痕量氧的高性能室温检测。在表界面结构设计方面,作者证明了Bi2O2Se表面的Se空位能在吸附氧分子后引起表面原子层的重构,使材料表面生成具有高比表面积的非晶Se层。这一Se层具有非常丰富的活性位点,能高效吸附氧分子;在能带工程方面,作者制备了n型的半导体Bi2O2Se,其导带底要高于氧分子的LUMO轨道,这一能级关系会导致Bi2O2Se吸附氧分子后载流子浓度显著下降,使得电阻显著增加。结合二维Bi2O2Se的高比表面积,有望实现对ppm级痕量氧的检测。

4.、材料表征与1理论计算

首先,作者对Bi2O2Se表面Se层的氧吸附行为进行了表征,然后通过理论计算进行了验证和解释(图一)。在氧吸附表征中,作者先利用STM扫描了新鲜解离的Bi2O2Se,得到了Bi2O2Se表面的原子像,发现其具有大量二聚的Se空位。接下来,作者在腔体中引入非常少量的氧分子,发现Se空位作为活性位点开始对氧分子进行吸附。随着引入的氧分子量的增加,Bi2O2Se的表面开始发生重构,形成具有高比表面积的Se非晶层。理论计算的结果表明,Se层的重构是由于吸附分子与Se原子的强相互作用形成。在原位的XPS测试中,具有非晶Se层的Bi2O2Se在环境的氧气浓度只有大约4.0 × 10-11 mol/L时依然可以有效吸附氧分子。这意味着Bi2O2Se可能对氧气非常敏感。

▲Figure 1. Oxygen adsorption on the surface of layered Bi2O2Se. a-c) STM images showing the fresh Bi2O2Se surface containing the Se termination and the Se vacancy after cleavage (a), the surface with little oxygen adsorbed (b), and that adsorbed by lots of oxygen (c). Note that the Se layer turns amorphous for more oxygen adsorbed. d-i) Top views (d-f) and side views (g-i) of atomic structural models for cleaved Bi2O2Se slab (d, g) and different representative O2 adsorption configurations (e, hf, i). Purple, orange and red balls in structural models represent Bi, Se and O atoms from Bi2O2Se slab, respectively. Green balls serve as adsorbed oxygen molecules. The cleaved Bi2O2Se is terminated by alternate Se and Se vacancy dimers as (a). Single/five oxygen molecules per unit cell are put on Bi2O2Se surface to simulate the few and lots of oxygen introduced, respectively. j) O 1s spectra of the lattice and the adsorbed O under different O2 pressures at room temperature by APXPS measurement.

4.2、器件性能测试

A. 氧传感机理阐述

在加工成氧传感器之前,作者先测试了氧气对Bi2O2Se器件电学特性的调制作用。作者制备了Bi2O2Se霍尔器件,并利用PPMS平台测试了材料曝露氧气后电阻、迁移率、载流子浓度的变化。图二显示,器件在曝露氧气后,电阻有了明显的上升。迁移率和载流子浓度的测试表明,器件电阻显著上升的原因是Bi2O2Se表面吸附了氧分子后迁移率和载流子浓度同时下降。这一现象可归结为:氧分子捕获Bi2O2Se的电子,导致Bi2O2Se载流子浓度的下降;同时,表面吸附的氧分子也会成为散射中心,降低了材料的迁移率。

▲Figure 2. a) Photograph of a typical Hall-bar device of 2D Bi2O2Se. b) The plot showing the resistance variation of Bi2O2Se after exposure to ~ 21 % O2 in air from the vacuum. c) The reduction in the carrier density/mobility of Bi2O2Se as the function of oxygen exposed time. d) Schematic diagram illustrating that the Bi2O2Se Fermi level E f1 shifts to E f2 due to oxygen exposed. ( E fi: the intrinsic Fermi levelCB: conduction bandVB: valence band).

B. 氧传感性能测试

在氧传感性能测试中,作者主要测试了Bi2O2Se传感器在室温下对氧气的灵敏度。为进一步增强性能,作者制备了叉指电极结构的Bi2O2Se传感器。图三显示了该Bi2O2Se器件对低至0.25 ppm,高至400 ppm的氧气均有很好的响应。这一指标优于已知的所有电阻型氧传感器,实现了真正意义上的ppm级氧气传感(接近ppb级)。除了对器件灵敏度的测试,作者还检验了器件的稳定性、选择性等器件性能指标。在器件稳定性的测试中,保存一个月以上的器件依然显示了很好的灵敏度;气体选择性的测试中,Bi2O2Se传感器展现出对氧气的高度专一性。

▲Figure 3. Oxygen detection of 2D Bi2O2Se sensors. a) Schematic presenting 2D Bi2O2Se sensor and its atomic force microscopy image of selected area marked by a red rectangle (scale bar: 1 μm). b) Dynamic responses of 2D Bi2O2Se to different concentrations of oxygen. The sample possesses 0.25 ppm of minimum detection at room temperature. c) Comparison between 2D Bi2O2Se oxygen sensor and other typical oxygen sensors subjected to minimum detection and working temperature (CNT: carbon nanotube). d) Stability test of 2D Bi2O2Se sensor. e) Selectivity test of 2D Bi2O2Se sensor. The concentration of the target gases is ~3 ppm.

C. 氧传感器件的集成

为进一步展示Bi2O2Se传感器在集成化方面的潜力,作者对比了单个Bi2O2Se传感器与Bi2O2Se传感器阵列对痕量氧气的检测能力(图四)。结果显示,阵列器件显示了很高的信噪比,而检测极限也有了提升,达到比0.25 ppm更低的检测下限。这意味Bi2O2Se传感器具有优秀的集成化潜力。

▲Figure 4. Integration of 2D Bi2O2Se sensors for trace oxygen detection. a) Schematic showing arrayed sensors integrated in the form of the parallel (I) and the inpidual (II). b) Optical photograph of the sensor array. Scale bar: 30 μm. c, d) Current variations and the corresponding d I /dt of the connect forms I and II for the change of oxygen concentration, respectively.

作者在此研究工作中利用二维Bi2O2Se材料实现了对痕量氧(0.25 ppm或更低)的检测。所制得的器件在传感器的灵敏度、稳定性、气体选择性和可重复性等多项指标中都具有很好的表现。作者通过STM、原位XPS和理论计算证明:这一系列高性能的指标得益于Bi2O2Se材料表面因为重构形成的高比表面积的Se层。这一工作清晰地阐明了Bi2O2Se表面结构与氧传感性能之间的构效关系,不仅促进了二维材料在气体传感领域的集成化应用,也为从原子结构出发设计高性能氧传感器提供了新的思路。

此工作的通讯作者是北京大学彭海琳教授,共同第一作者为北京大学博雅博士后许适溥和以色列魏茨曼科学研究所的付会霞博士,该工作的主要合作者还包括魏茨曼科学研究所的颜丙海教授、北京大学物理学院的江颖教授、牛津大学的陈宇林教授、上海 科技 大学的柳仲楷教授和刘志教授。该研究工作获得了来自国家自然科学基金、北京分子科学国家实验室、中国博士后科学基金、北京大学博雅博士后等项目的支持。

谨以此文热烈祝贺唐有祺先生百年华诞!

手机和平板电脑可以像报纸一样卷起来,隐形眼镜中集成的屏幕能够直接读取信息......这些听起来非常科幻的场景,在新型二维材料的推动下,正不断趋于现实。

二维材料 是一种具有单个或几个原子层厚度的新型晶体材料,目前已经发展成为一个完整的材料体系,涵盖了从导体、半导体、超导体到绝缘体,铁电、铁磁、反铁磁等各种类型。高质量的二维材料在 探索 新的物理现象及进一步扩展其在微电子和光电子领域的应用方面发挥着重要作用。

松山湖材料实验室副主任张广宇研究员所带领的二维材料团队围绕二维材料的研究、制备及应用开展了一系列工作,并取得了国际领先的研究成果。

如今,“石墨烯”已成为大众所熟知的“明星材料”,石墨烯电池等产品也已逐步在商业领域有所应用。早在2004年,英国曼彻斯特大学Andre Geim教授课题组成功分离出单原子层的石墨材料——石墨烯,从而引发了二维材料研究的热潮,相关研究者因此获得了2010年的诺贝尔物理学奖。

近年来,在半导体器件发展微型化和柔性化的驱动下,二维材料由于其优异的光、电、机械性能(例如高灵敏度、超高透明度以及半导体特性等),表现出了独特的优势。

“二维材料的特殊性质赋予了它们广泛的应用前景。首先在物理属性上, 二维材料只有一个原子层厚度,这就使得该类材料具有超高的透明度以及良好的柔韧性。 ”张广宇介绍,未来,二维材料一个重要的应用方向就是柔性透明电子器件。

“二维材料表面没有悬键,外延生长制备的过程中对晶格匹配度要求不高,属于范德瓦尔斯外延,对材料和工艺基本没有限制要求。”张广宇表示。

二维材料的出现,为突破传统半导体器件在性能上的各种限制提供了新的途径,为实现各种功能应用提供了新的思路。

在不到一个指甲盖大小的面积上,可以集成超过1500个柔性二硫化钼场效应晶体管器件。2020年9月,张广宇所带领的团队在电子学期刊《Nature electronics》上发表了论文《基于单层二硫化钼场效应晶体管的大面积柔性透明电子器件》。

该团队利用外延生长得到的四英寸高质量、高定向单层二硫化钼薄膜,结合传统的微加工工艺,通过优化绝缘层与接触电阻,制备出了大面积柔性透明的二硫化钼场效应晶体管及各种逻辑器件。器件表现出了优异的特性: 晶体管器件密度可达1518个/平方厘米,成品率高达97%,是目前已报道结果中最高指标,处于国际领先水平 ;单个器件也表现出较好的电学性能和柔韧性。

张广宇指出,“目前,成熟的半导体工艺多采用8寸或者12寸硅材料晶圆,尺寸越大,集成芯片就越多,成本也越低。所以要实现大尺寸二硫化钼晶圆的制备也是一样的思路,但是越大的尺寸,也意味着更高的技术要求。”

大面积高质量的二硫化钼薄膜的制备,还存在晶粒尺寸较小、晶界多、取向随机等问题。 为解决这一难题,张广宇团队利用自主设计搭建的多源化学气相沉积系统,采用立式生长和多点形核的方法,在蓝宝石衬底上外延制备出了四英寸高质量连续的单层二硫化钼晶圆。

他这样形容其中的原理,“就像拿一个喷壶往墙上喷水,第一代设备只有一个喷头,这时喷的区域比较小;第二代设备是用三个喷头一起喷,这样喷出的面积就能扩大三倍;第三代设备是用六个源一起喷,这种情况下喷出的区域更大,更均匀。”

“二维半导体材料具 有很多优异的特性,可以弥补硅以及其它半导体材料在应用方面的不足,发挥材料自身的优势,实现一些新的、更加契合的应用场景。比如柔性可穿戴器件,超灵敏探测器等。 ”他表示,二维材料不是万能的,而是有适合自身的特殊应用场景,应该利用这些特点来开发它相对应的产品。

2019年初,松山湖材料实验室二维材料团队开始起步建设。他表示,二维材料团队主要聚焦有应用前景的材料研究。二维材料要真正应用到实际生活中,还要经历一段必不可少的过程,包括验证二维材料在原理和技术上的可行性,优化各种工艺参数、提高器件各方面性能等。

二维材料团队作为一个新团队,团队搭建是最重要的工作之一。目前团队固定成员不到十人,均具有不同的研究背景。“既有做材料的,也有做器件的;既有做加工和器件制备的,也有做表征和测量的......”张广宇表示,团队工作需要成员相互配合,这样才能更加高质量、高效率开展研究工作。

随着松山湖材料实验室建设步入正轨,越来越多优秀的海外研究人才选择加入实验室,在此开展自己的科研工作。团队中两位骨干青年科研人才,就是张广宇到欧洲宣讲时招聘引进的。在他看来,这是一个不错的兆头。“松山湖材料实验室作为广东省布局建设的新型科研机构,各方面资源相对充足,具备较强的吸引力。同时东莞也为科研人才提供了一个能够安心做事、专心科研的舞台。”


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/5952547.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-09
下一篇 2023-03-09

发表评论

登录后才能评论

评论列表(0条)

保存