半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和积体电路的电子材料。
基本介绍中文名 :半导体材料 外文名 :semiconductor material 分类 :电子材料 导电能力 :介于导体与绝缘体之间 电阻率 :1mΩ·cm~1GΩ·cm 作用 :可用来制作半导体器件和积体电路 特性 :半导体电导率随温度的升高而升高 简介,主要种类,新型材料,实际运用,相关材料,特性信息,特性参数,特性要求,材料工艺,套用发展,早期套用,发展现状,战略地位, 简介 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。 由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化矽(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现电晶体化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体矽(Si)以后,不仅使电晶体的类型和品种增加、性能提高,而且迎来了大规模和超大规模积体电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料 主要种类 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体 在元素周期表的ⅢA族至IVA族分布著11种具有半导性 的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中套用最广的两种材料。 半导体材料 无机化合物半导体 分二元系、三元系、四元系等。 二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。②Ⅲ-Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In和V族元素P、As、Sb组成,典型的代表为GaAs。它们都具有闪锌矿结构,它们在套用方面仅次于Ge、Si,有很大的发展前途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和Ⅵ族元素S、Se、Te形成的化合物,是一些重要的光电材料。ZnS、CdTe、HgTe具有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素Cu、Ag、Au和 Ⅶ族元素Cl、Br、I形成的化合物,其中CuBr、CuI具有闪锌矿结构。⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族元素 S、Se、Te形成的化合物具有的形式,如Bi2Te3、Bi2Se3、Bi2S3、As2Te3等是重要的温差电材料。⑥第四周期中的B族和过渡族元素Cu、 Zn、Sc、Ti、V、Cr、Mn、Fe、Co、Ni的氧化物,为主要的热敏电阻材料。⑦某些稀土族元素 Sc、Y、Sm、Eu、Yb、Tm与Ⅴ族元素N、As或Ⅵ族元素S、Se、Te形成的化合物。 除这些二元系化合物外还有它们与元素或它们之间的固溶体半导体,例如Si-AlP、Ge-GaAs、InAs-InSb、AlSb-GaSb、InAs-InP、GaAs-GaP等。研究这些固溶体可以在改善单一材料的某些性能或开辟新的套用范围方面起很大作用。 半导体材料 三元系包括:族:这是由一个Ⅱ族和一个Ⅳ族原子去替代Ⅲ-Ⅴ族中两个Ⅲ族原子所构成的。例如ZnSiP2、ZnGeP2、ZnGeAs2、CdGeAs2、CdSnSe2等。族:这是由一个Ⅰ族和一个Ⅲ族原子去替代Ⅱ-Ⅵ族中两个Ⅱ族原子所构成的, 如 CuGaSe2、AgInTe2、 AgTlTe2、CuInSe2、CuAlS2等。:这是由一个Ⅰ族和一个Ⅴ族原子去替代族中两个Ⅲ族原子所组成,如Cu3AsSe4、Ag3AsTe4、Cu3SbS4、Ag3SbSe4等。此外,还有它的结构基本为闪锌矿的四元系(例如Cu2FeSnS4)和更复杂的无机化合物。 有机化合物半导体 已知的有机半导体有几十种,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它们作为半导体尚未得到套用。 非晶态与液态半导体 这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。 新型材料 其结构稳定,拥有卓越的电学特性,而且成本低廉,可被用于制造现代电子设备中广泛使用的场效应电晶体。 科学家们表示,最新研究有望让人造皮肤、智慧型绷带、柔性显示屏、智慧型挡风玻璃、可穿戴的电子设备和电子墙纸等变成现实。 昂贵的原因主要因为电视机、电脑和手机等电子产品都由矽制成,制造成本很高而碳基(塑胶)有机电子产品不仅制造方便、成本低廉,而且轻便柔韧可弯曲,代表了“电子设备无处不在”这一未来趋势。 以前的研究表明,碳结构越大,其性能越优异。但科学家们一直未曾研究出有效的方法来制造更大的、稳定的、可溶解的碳结构以进行研究,直到此次祖切斯库团队研制出这种新的用于制造电晶体的有机半导体材料。 有机半导体是一种塑胶材料,其拥有的特殊结构让其具有导电性。在现代电子设备中,电路使用电晶体控制不同区域之间的电流。科学家们对新的有机半导体材料进行了研究并探索了其结构与电学属性之间的关系。 实际运用 制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。 所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯;另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。 半导体材料 绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法套用最广,80%的矽单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中矽单晶的最大直径已达300毫米。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性矽单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯矽单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。 在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束外延等。工业生产使用的主要是化学气相外延,其次是液相外延。金属有机化合物气相外延和分子束外延则用于制备量子阱及超晶格等微结构。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。 相关材料 单晶制备 为了消除多晶材料中各小晶体之间的晶粒间界对半导体材料特性参量的巨大影响,半导体器件的基体材料一般采用单晶体。单晶制备一般可分大体积单晶(即体单晶)制备和薄膜单晶的制备。体单晶的产量高,利用率高,比较经济。但很多的器件结构要求厚度为微米量级的薄层单晶。由于制备薄层单晶所需的温度较低,往往可以得到质量较好的单晶。具体的制备方法有:①从熔 体中拉制单晶:用与熔体相同材料的小单晶体作为籽晶,当籽晶与熔体接触并向上提拉时,熔体依靠表面张力也被拉出液面,同时结晶出与籽晶具有相同晶体取向的单晶体。②区域熔炼法制备单晶:用一籽晶与半导体锭条在头部熔接,随着熔区的移动则结晶部分即成单晶。③从溶液中再结晶。④从汽相中生长单晶。前两种方法用来生长体单晶,用提拉法已经能制备直径为200毫米,长度为1~2米的锗、矽单晶体。后两种方法主要用来生长薄层单晶。这种薄层单晶的生长一般称外延生长,薄层材料就生长在另一单晶材料上。这另一单晶材料称为衬底,一方面作为薄层材料的附着体,另一方面即为单晶生长所需的籽晶。衬底与外延层可以是同一种材料(同质外延),也可以是不同材料(异质外延)。采用从溶液中再结晶原理的外延生长方法称液相外延;采用从汽相中生长单晶原理的称汽相外延。液相外延就是将所需的外延层材料(作为溶质,例如GaAs),溶于某一溶剂(例如液态镓)成饱和溶液,然后将衬底浸入此溶液,逐渐降低其温度,溶质从过饱和溶液中不断析出,在衬底表面结晶出单晶薄层。汽相外延生长可以用包含所需材料为组分的某些化合物气体或蒸汽通过分解或还原等化学反应淀积于衬底上,也可以用所需材料为源材料,然后通过真空蒸发、溅射等物理过程使源材料变为气态,再在衬底上凝聚。分子束外延是一种经过改进的真空蒸发工艺。利用这种方法可以精确控制射向衬底的蒸气速率,能获得厚度只有几个原子厚的超薄单晶,并可得到不同材料不同厚度的互相交叠的多层外延材料。非晶态半导体虽然没有单晶制备的问题,但制备工艺与上述方法相似,一般常用的方法是从汽相中生长薄膜非晶材料。 半导体材料 宽频隙半导体材料 氮化镓、碳化矽和氧化锌等都是宽频隙半导体材料,因为它的禁频宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化矽可以工作到600摄氏度;金刚石如果做成半导体,温度可以更高,器件可用在石油钻探头上收集相关需要的信息。它们还在航空、航天等恶劣环境中有重要套用。广播电台、电视台,唯一的大功率发射管还是电子管,没有被半导体器件代替。这种电子管的寿命只有两三千小时,体积大,且非常耗电;如果用碳化矽的高功率发射器件,体积至少可以减少几十到上百倍,寿命也会大大增加,所以高温宽频隙半导体材料是非常重要的新型半导体材料。 半导体材料 这种材料非常难生长,矽上长矽,砷化镓上长GaAs,它可以长得很好。但是这种材料大多都没有块体材料,只得用其它材料做衬底去长。比如说氮化镓在蓝宝石衬底上生长,蓝宝石跟氮化镓的热膨胀系数和晶格常数相差很大,长出来的外延层的缺陷很多,这是最大的问题和难关。另外这种材料的加工、刻蚀也都比较困难。科学家正在着手解决这个问题,如果这个问题一旦解决,就可以提供一个非常广阔的发现新材料的空间。 低维半导体材料 实际上这里说的低维半导体材料就是纳米材料,之所以不愿意使用这个词,发展纳米科学技术的重要目的之一,就是人们能在原子、分子或者纳米的尺度水平上来控制和制造功能强大、性能优越的纳米电子、光电子器件和电路,纳米生物感测器件等,以造福人类。可以预料,纳米科学技术的发展和套用不仅将彻底改变人们的生产和生活方式,也必将改变社会政治格局和战争的对抗形式。这也是为什么人们对发展纳米半导体技术非常重视的原因。 电子在块体材料里,在三个维度的方向上都可以自由运动。但当材料的特征尺寸在一个维度上比电子的平均自由程相比更小的时候,电子在这个方向上的运动会受到限制,电子的能量不再是连续的,而是量子化的,我们称这种材料为超晶格、量子阱材料。量子线材料就是电子只能沿着量子线方向自由运动,另外两个方向上受到限制;量子点材料是指在材料三个维度上的尺寸都要比电子的平均自由程小,电子在三个方向上都不能自由运动,能量在三个方向上都是量子化的。 半导体材料 由于上述的原因,电子的态密度函式也发生了变化,块体材料是抛物线,电子在这上面可以自由运动;如果是量子点材料,它的态密度函式就像是单个的分子、原子那样,完全是孤立的 函式分布,基于这个特点,可制造功能强大的量子器件。 大规模积体电路的存储器是靠大量电子的充放电实现的。大量电子的流动需要消耗很多能量导致晶片发热,从而限制了集成度,如果采用单个电子或几个电子做成的存储器,不但集成度可以提高,而且功耗问题也可以解决。雷射器效率不高,因为雷射器的波长随着温度变化,一般来说随着温度增高波长要红移,所以光纤通信用的雷射器都要控制温度。如果能用量子点雷射器代替现有的量子阱雷射器,这些问题就可迎刃而解了。 半导体材料 基于GaAs和InP基的超晶格、量子阱材料已经发展得很成熟,广泛地套用于光通信、移动通讯、微波通讯的领域。量子级联雷射器是一个单极器件,是近十多年才发展起来的一种新型中、远红外光源,在自由空间通信、红外对抗和遥控化学感测等方面有着重要套用前景。它对MBE制备工艺要求很高,整个器件结构几百到上千层,每层的厚度都要控制在零点几个纳米的精度,中国在此领域做出了国际先进水平的成果;又如多有源区带间量子隧穿输运和光耦合量子阱雷射器,它具有量子效率高、功率大和光束质量好的特点,中国已有很好的研究基础;在量子点(线)材料和量子点雷射器等研究方面也取得了令国际同行瞩目的成绩。 半导体材料 材料中的杂质和缺陷 杂质控制的方法大多数是在晶体生长过程中同时掺入一定类型一定数量的杂质原子。这些杂质原子最终在晶体中的分布,除了决定于生长方法本身以外,还决定于生长条件的选择。例如用提拉法生长时杂质分布除了受杂质分凝规律的影响外,还受到熔体中不规则对流的影响而产生杂质分布的起伏。此外,无论采用哪种晶体生长方法,生长过程中容器、加热器、环境气氛甚至衬底等都会引入杂质,这种情况称自掺杂。晶体缺陷控制也是通过控制晶体生长条件(例如晶体周围热场对称性、温度起伏、环境压力、生长速率等)来实现的。随着器件尺寸的日益缩小,对晶体中杂质分布的微区不均匀和尺寸为原子数量级的微小缺陷也要有所限制。因此如何精心设计,严格控制生长条件以满足对半导体材料中杂质、缺陷的各种要求是半导体材料工艺中的一个中心问题。 特性信息 特性参数 半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。常用的半导体材料的特性参数有:禁频宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的电子和空穴)、非平衡载流子寿命、位错密度。禁频宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部的载流子由非平衡状态向平衡状态过渡的弛豫特性。位错是晶体中最常见的一类晶体缺陷。位错密度可以用来衡量半导体单晶材料晶格完整性的程度。当然,对于非晶态半导体是没有这一反映晶格完整性的特性参数的。 半导体材料 特性要求 半导体材料的特性参数对于材料套用甚为重要。因为不同的特性决定不同的用途。 半导体材料 电晶体对材料特性的要求 :根据电晶体的工作原理,要求材料有较大的非平衡载流子寿命和载流子迁移率。用载流子迁移率大的材料制成的电晶体可以工作于更高的频率(有较好的频率回响)。晶体缺陷会影响电晶体的特性甚至使其失效。电晶体的工作温度高温限决定于禁频宽度的大小。禁频宽度越大,电晶体正常工作的高温限也越高。 光电器件对材料特性的要求:利用半导体的光电导(光照后增加的电导)性能的辐射探测器所适用的辐射频率范围与材料的禁频宽度有关。材料的非平衡载流子寿命越大,则探测器的灵敏度越高,而从光作用于探测器到产生回响所需的时间(即探测器的弛豫时间)也越长。因此,高的灵敏度和短的弛豫时间二者难于兼顾。对于太阳能电池来说,为了得到高的转换效率,要求材料有大的非平衡载流子寿命和适中的禁频宽度(禁频宽度于1.1至1.6电子伏之间最合适)。晶体缺陷会使半导体发光二极体、半导体雷射二极体的发光效率大为降低。 温差电器件对材料特性的要求:为提高温差电器件的转换效率首先要使器件两端的温差大。当低温处的温度(一般为环境温度)固定时,温差决定于高温处的温度,即温差电器件的工作温度。为了适应足够高的工作温度就要求材料的禁频宽度不能太小,其次材料要有大的温差电动势率、小的电阻率和小的热导率。 材料工艺 半导体材料特性参数的大小与存在于材料中的杂质原子和晶体缺陷有很大关系。例如电阻率因杂质原子的类型和数量的不同而可能作大范围的变化,而载流子迁移率和非平衡载流子寿命 一般随杂质原子和晶体缺陷的增加而减小。另一方面,半导体材料的各种半导体性质又离不开各种杂质原子的作用。而对于晶体缺陷,除了在一般情况下要尽可能减少和消除外,有的情况下也希望控制在一定的水平,甚至当已经存在缺陷时可以经过适当的处理而加以利用。为了要达到对半导体材料的杂质原子和晶体缺陷这种既要限制又要利用的目的,需要发展一套制备合乎要求的半导体材料的方法,即所谓半导体材料工艺。这些工艺大致可概括为提纯、单晶制备和杂质与缺陷控制。 半导体材料 半导体材料的提纯“主要是除去材料中的杂质。提纯方法可分化学法和物理法。化学提纯是把材料制成某种中间化合物以便系统地除去某些杂质,最后再把材料(元素)从某种容易分解的化合物中分离出来。物理提纯常用的是区域熔炼技术,即将半导体材料铸成锭条,从锭条的一端开始形成一定长度的熔化区域。利用杂质在凝固过程中的分凝现象,当此熔区从一端至另一端重复移动多次后,杂质富集于锭条的两端。去掉两端的材料,剩下的即为具有较高纯度的材料(见区熔法晶体生长)。此外还有真空蒸发、真空蒸馏等物理方法。锗、矽是能够得到的纯度最高的半导体材料,其主要杂质原子所占比例可以小于百亿分之一。 套用发展 早期套用 半导体的第一个套用就是利用它的整流效应作为检波器,就是点接触二极体(也俗称猫胡子检波器,即将一个金属探针接触在一块半导体上以检测电磁波)。除了检波器之外,在早期,半导体还用来做整流器、光伏电池、红外探测器等,半导体的四个效应都用到了。 半导体材料 从1907年到1927年,美国的物理学家研制成功晶体整流器、硒整流器和氧化亚铜整流器。1931年,兰治和伯格曼研制成功硒光伏电池。1932年,德国先后研制成功硫化铅、硒化铅和碲化铅等半导体红外探测器,在二战中用于侦探飞机和船舰。二战时盟军在半导体方面的研究也取得了很大成效,英国就利用红外探测器多次侦探到了德国的飞机。 发展现状 相对于半导体设备市场,半导体材料市场长期处于配角的位置,但随着晶片出货量增长,材料市场将保持持续增长,并开始摆脱浮华的设备市场所带来的阴影。按销售收入计算, 日本保持最大半导体材料市场的地位。然而台湾、ROW、韩国也开始崛起成为重要的市场,材料市场的崛起体现了器件制造业在这些地区的发展。晶圆制造材料市场和封装材料市场双双获得增长,未来增长将趋于缓和,但增长势头仍将保持。 半导体材料 美国半导体产业协会(SIA)预测,2008年半导体市场收入将接近2670亿美元,连续第五年实现增长。无独有偶,半导体材料市场也在相同时间内连续改写销售收入和出货量的记录。晶圆制造材料和封装材料均获得了增长,预计今年这两部分市场收入分别为268亿美元和199亿美元。 日本继续保持在半导体材料市场中的领先地位,消耗量占总市场的22%。2004年台湾地区超过了北美地区成为第二大半导体材料市场。北美地区落后于ROW(RestofWorld)和韩国排名第五。ROW包括新加坡、马来西亚、泰国等东南亚国家和地区。许多新的晶圆厂在这些地区投资建设,而且每个地区都具有比北美更坚实的封装基础。 晶片制造材料占半导体材料市场的60%,其中大部分来自矽晶圆。矽晶圆和光掩膜总和占晶圆制造材料的62%。2007年所有晶圆制造材料,除了湿化学试剂、光掩模和溅射靶,都获得了强劲增长,使晶圆制造材料市场总体增长16%。2008年晶圆制造材料市场增长相对平缓,增幅为7%。预计2009年和2010年,增幅分别为9%和6%。 半导体材料市场发生的最重大的变化之一是封装材料市场的崛起。1998年封装材料市场占半导体材料市场的33%,而2008年该份额预计可增至43%。这种变化是由于球栅阵列、晶片级封装和倒装晶片封装中越来越多地使用碾压基底和先进聚合材料。随着产品便携性和功能性对封装提出了更高的要求,预计这些材料将在未来几年内获得更为强劲的增长。此外,金价大幅上涨使引线键合部分在2007年获得36%的增长。 与晶圆制造材料相似,半导体封装材料在未来三年增速也将放缓,2009年和2010年增幅均为5%,分别达到209亿美元和220亿美元。除去金价因素,且碾压衬底不计入统计,实际增长率为2%至3%。 战略地位 20世纪中叶,单晶矽和半导体电晶体的发明及其矽积体电路的研制成功,导致了电子工业革命;20世纪70年代初石英光导纤维材料和GaAs雷射器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了资讯时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和套用,将使人类能从原子、分子或纳米尺度水平上控制、 *** 纵和制造功能强大的新型器件与电路,深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。半导体材料:氧化锌半导瓷 化学式:ZnO 基本概况:ZnO(氧化锌)是一种新型的化合物半导体材料Ⅱ一Ⅵ宽禁带(E =3.37eV)。在常温常压下其是一种非常典型的直接宽禁半导体材料,稳定相是六方纤锌矿结构,其禁带宽度所对应紫外光波长,有希望能够开发出蓝绿光、蓝光、紫外光等等多种发光器件。氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。 晶体数据:针状体根部直径 (µm) 0.1~10 比热 (J/g·k) 5.52 耐热性能 (℃) 1720(升华) 真实密度 (g/cm3) 5.8 表观密度 (g/cm3) 0.01~0.5 粉体电阻率 (Ω·cm) 104~109 介电常数 (实部) 4.5~30 介电常数 (虚部) 20~135 拉伸强度 (MPa) 1.2×104 d性模量 (MPa) 3.5×105 热膨胀率 (%/℃) 4×106 氧化锌空间结构 电镜下的氧化锌半导体材料 制备方法:纯氧化锌是煅烧锌矿石或在空气中燃烧锌条而得。氧化锌结晶是六角晶系,晶格常数α=3.25×10-10m,c=5.20×10-10m。室温下满足化学计量比关系的氧化锌晶体或多晶体中导电载流子极少,具有绝缘体的性能。在空气中经高温处理后,将会因氧的过剩或不足而成为偏离化学计量比关系的不完整晶体,即含有氧缺位或氧填隙锌的非化学计量比结晶,使自由电子或空穴大大增多,氧化锌由白色绝缘体变成青黑色半导体。当在氧化锌中加入适量的其他氧化物或盐类,如Bi2O3、Sb2O3、Co2O3、MnO、Cr2O3、Al2O3或Al(NO3)2等作为添加剂,按一般的陶瓷工艺成型烧结,可以制得氧化锌半导瓷。理论模型:六方纤锌矿结构是理想的氧化锌,对称性C6v-4、属于P63mc空间群,品格常数C=O.521 nm,Y=120 ,a=b=O.325 nm,α=β= 90。。其中c/a较理想的六角柱紧堆积结构的1.633稍小为1.602。其它方向的氧ZnO键长为O.197 nm,只有c轴方向为0.199 nm,其晶胞由锌的六角密堆积与氧的六角密堆积反向套够而成。本文所有的及孙模型都是以超晶胞为基础的模型。我们可以看出,在氧化锌中的配位体是一个三角锥,锥顶原子和中心原子的键长与锥面三个原子的键长相比要稍大,其棱长小于底面边长。所以,ZnO 四面体为晶体中02-一配位多面体,O2-与Zn 配位情况基本相同。 计算结果:利用实验晶格参数对理想的ZnO晶体的电子结构进行了计算。其中包括总体态密度,能带结构,分波态密度。图3,图4,图5为计算结果。用其他理论方法计算的结果与本文计算结果相符合。我们可以从图3,图4,图5中看出,基本上,ZnO的价带可分为两个区域,分别是-4.0~0 eV的上价带区以及一6.0~L4.0 eV的下价带。很显然,ZnO下价带区则主要是Zn3d态贡献的,而上价带区则主要是由02p态形成的。在一18 eV处由02s态贡献的价带部分,与其他两个价带由于之间的相互作用相对较弱,本文不做相关讨论。对于主要来源干Zn4s态贡献的导带部分,从Zn4s态到02p态电子具有明显的跃迁过程,氧位置处的局域态密度的引力中心受到影响向低能级方向移动,这就表明了,理想ZnO是一个共价键较弱,离子性较强的混合键金属氧化物半导体材料。组成:这种半导瓷由半导电的氧化锌晶粒及添加剂成分构成的晶粒间层所组成,其理想结构模型如图。由于每一个氧化锌晶粒和晶粒间层之间都能形成一个接触区,具有一般半导体接触的单向导电性,所以两个晶粒间存在两个相反位置的整流结,一块氧化锌半导瓷片是大量相反放置的整流结组的堆积。 图6:氧化锌半导瓷空间结构氧化锌半导瓷的伏安特性:当外加电压于这种材料时,低电压下,由于反偏整流结的阻挡作用,材料呈高阻状态,具有绝缘性能。当电压高达一定值时,整流结发生击穿,材料电阻率迅速下降,成为导电材料,可以通过相当大密度的电流。图7:氧化锌半导体瓷的伏安特性 作用:氧化锌半导瓷的非线性电压电流关系。利用这种对称的非线性伏安特性可以制成各种电压限幅器、能量吸收装置等,如电力系统的过电压保护装置,特别是由于这类材料低电压下的电阻率高,因而在长期工作电压下漏电流小、发热小,可以做成不带火花间隙的高压避雷器;而高电压下电阻低、残压小,能把过电压限制在更低的水平上,使电网和电工设备的绝缘水平有可能降低,特别是在超高压电网,这一点更为重要。拓展:稀磁半导体材料(Diluted magnetic semiconductors,DMS)稀释磁性半导体简称稀磁半导体(Diluted Magneticsemi Conductors,DMS),是利用3d族过渡金属或4f族稀土金属的磁性离子替代Ⅱ2Ⅵ族、Ⅳ2Ⅵ族、Ⅱ2Ⅴ族或Ⅲ2Ⅴ族等化合物半导体中的部分非磁性阳离子而形成的新型半导体材料,又可称为半磁半导体(Semi Magnetic Semi Conductors,SMSC)材料或半导体自旋电子材料。之所以称为稀磁半导体是由于相对于普通的磁性材料,其磁性元素的含量较少。这类材料由于阳离子替代而存在局域磁性顺磁离子,具有很强的局域自旋磁矩。局域顺磁离子与迁移载流子(电子或空穴)之间的自旋2自旋相互作用结果产生一种新的交换相互作用,使得稀磁半导体具有很多与普通半导体截然不同的特殊性质,如磁性、显著的磁光效应和磁输运性质。稀磁半导体能利用电子的电荷特性和自旋特性,即兼具半导体材料和磁性材料的双重特性。它将半导体的信息处理与磁性材料的信息存储功能、半导体材料的优点和磁性材料的非易失性两者融合在一起,这种材料研制成功将是材料领域的革命性进展。同时,稀磁半导体在磁性物理学和半导体物理学之间架起了一道桥梁。ZnO作为一种宽带隙半导体,激子束缚能较高(60meV),具有温度稳定性好、光透过率高、化学性能稳定,原料丰富易得、价格低廉等优点,并且过渡金属离子易于掺杂,可制备性能良好的稀磁半导体,因而成为目前稀磁半导体材料的研究热点。 国内研究以及原理:近年来,由于1i掺杂的Zn()材料可能同时具有铁电性和铁磁性,国内很多研究者都对它进行了研究。南京大学的宋海岸等制备了Ni、I』i共掺的ZnO薄膜,发现由于Li掺杂引入了空穴,使铁磁性减弱 ]。北京航空航天大学的李建军等制备了I Co共掺的ZnO纳米颗粒,实验发现,当掺杂浓度少于9 时体系的铁磁性会增强,其原因是掺入后形成了填隙原子,电子浓度明显增加,使得束缚磁极子浓度增加,且磁极子之间容易发生重叠,最终导致铁磁耦合作用增强。武汉大学的C W Zou等制备了Mn、Li共掺杂的ZnO薄膜,研究了不同Mn掺杂浓度的ZnO样品。但这些研究中对Li、Mn共掺杂ZnO陶瓷的磁性研究并不常见。 应用现状与前景展望(1)改变组分获得所需的光谱效应通过改变磁性离子的浓度可得到所需要的带隙,从而获得相应的光谱效应。由于其响应波长可覆盖从紫外线到远红外线的宽范围波段,这种DMS是制备光电器件、光探测器和磁光器件的理想材料。在Ⅲ2Ⅴ族宽带隙稀磁半导体GaN中掺入不同的稀土磁性元素可发出从可见光到红外的不同波长的光,加上GaN本身可发紫外光,因此掺稀土GaN材料可发出从紫外到红外波段的光,如在GaN中掺Er可发绿光,而掺Pr可发红光等。1994年Wilson等[24]在掺Er的GaN薄膜中首次观察到1.54μm的红外光荧光。1998年Steckl等采用Er原位掺杂方法首次获得绿光发射[25],掺Er的GaN的另一个重要特性是其温度猝灭效应很弱,这对于制备室温发光器件非常重要。后来红光和蓝光器件相继研制成功,这些都可以作为光通信和光电集成的光源。(2)sp2d交换作用的应用利用DMS的巨法拉第旋转效应可制备非倒易光学器件,也可用于制备光调谐器、光开关和传感器件。DMS的磁光效应为光电子技术开辟了新的途径。利用其磁性离子和截流子自旋交换作用(sp2d作用)所引起的巨g因子效应,可制备一系列具有特殊性质的稀磁半导体超晶格和量子阱器件。这种量子阱和超晶格不仅具有普通量子阱和超晶格的电学、光学性质,而且还具有稀磁半导体的磁效应,因此器件具有很多潜在的应用价值。利用磁性和半导体性实现自旋的注入与输运,可造出新型的自旋电子器件,如自旋过滤器和自旋电子基发光二极管等。(3)深入研究自旋电子学,推动DMS的实用化自旋电子学是目前固体物理和电子学中的一个热点,其核心内容是利用和控制固体,尤其是半导体中的自旋自由度。近年来以稀磁半导体为代表的自旋电子学的研究相当活跃,各国科研机构和各大公司都投入了巨大财力和人力从事此领域的研究。利用具有磁性或自旋相关性质的DMS基材料可制出一类新型器件———既利用电子、空穴的电荷也利用它们的自旋。这些新材料和人造纳米结构,包括异质结构(HS)、量子阱(QW)和颗粒结构一直是一些新型功能的“沃土”———与自旋相关的输运、磁阻效应和磁光效应。自旋电子学可用于计算机的硬驱动,在计算机存储器中极具潜力。在高密度非易失性存储器、磁感应器和半导体电路的集成电路、光隔离器件和半导体激光器集成电路以及量子计算机等领域,DMS材料均有重大的潜在应用。但上述以稀磁半导体为基础的自旋电子器件的研制尚处于起步阶段,距实用化还有很长的路程。自旋电子学与自旋电子学器件研究的深入,将加深DMS机理的研究和理论的探索,推动DMS的实用化过程。(4)室温DMS的研究为了应用方便,需要开发高居里温度(Tc)的DMS材料(高于室温)。室温下具有磁性为磁性半导体的应用提供了可能。扩展更多的掺杂磁性元素或生长更多种类材料来提高DMS材料的居里温度是当前的首要问题。近来Hori等成功掺入5%Mn在GaN中,获得了高于室温的Tc报道表明(Zn,Co)O的居里温度可达到290~380K[26]。Dietl等[6]采用Zener模型对闪锌矿结构的磁半导体计算表明,GaMnN和ZnMnO具有高达室温的居里温度,该计算结果对实验研究提供了很好的理论依据。但是,如何将磁性和半导体属性有机地结合起来仍然是值得进一步研究的问题。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)