半导体掺杂有什么作用?

半导体掺杂有什么作用?,第1张

半导体掺杂是为了提高半导体器件的电学性能,半导体的很多电学特性都与掺杂的杂质浓度有关。

纯正的半导体是靠本征激发来产生载流子导电的,但是仅仅依靠本证激发的话产生的载流子数量很少,而且容易受到外间因素如温度等的影响。掺入相应的三价或是五价元素则可以在本征激发外产生其他的载流子。

半导体的常用掺杂技术主要有两种,即高温(热)扩散和离子注入。掺入的杂质主要有两类:第一类是提供载流子的受主杂质或施主杂质(如Si中的B、P、As);第二类是产生复合中心的重金属杂质(如Si中的Au)。

扩展资料:

掺杂之后的半导体能带会有所改变。依照掺杂物的不同,本征半导体的能隙之间会出现不同的能阶。施体原子会在靠近导带的地方产生一个新的能阶,而受体原子则是在靠近价带的地方产生新的能阶。假设掺杂硼原子进入硅,则因为硼的能阶到硅的价带之间仅有0.045电子伏特,远小于硅本身的能隙1.12电子伏特,所以在室温下就可以使掺杂到硅里的硼原子完全解离化。

掺杂物对于能带结构的另一个重大影响是改变了费米能阶的位置。在热平衡的状态下费米能阶依然会保持定值,这个特性会引出很多其他有用的电特性。举例来说,一个p-n结的能带会弯折,起因是原本p型半导体和n型半导体的费米能阶位置各不相同,但是形成p-n结后其费米能阶必须保持在同样的高度,造成无论是p型或是n型半导体的导带或价带都会被弯曲以配合界面处的能带差异。

参考资料来源:百度百科——半导体掺杂技术

半导体的导电能力取决于他们的纯度。完全纯净或本征半导体的导电能力很低,因为他们只含有很少的热运动产生的载流子。某种杂质的添加能极大的增加载流子的数目。这些掺杂质的半导体能接近金属的导电能力。轻掺杂的半导体可能在每十亿中只有一小部分。由于在硅中杂质的有限的固体溶解性,即使重掺杂的半导体每百万中也只有几百个杂质而已。由于半导体对于杂质的极度敏感性,很难制造真正的本征物质。因此实际上半导体器件几乎都是由掺杂物质制造的。

掺有磷的半导体就是一种掺杂半导体。假设硅晶体中已掺入少量的磷。磷原子进入了原本该由硅原子占有的晶体结构中的位置(见图上方)。磷,作为第5组元素,由5个价电子。磷原子共享了4个价电子给它周围的4个硅原子。4对电子对给了磷原子8个共享的电子。加上还有1个未共享的电子,一共由9个价电子。由于valence shell只能容纳8个电子,再也放不下第9个电子。这个电子就被磷原子抛了出来,自由地游荡在晶体结构中。每个添加进硅晶体结构中的磷原子能产生一个自由电子。

由于第9个电子的丢失,磷原子带正电。尽管这个原子离子化了,但它没有产生空穴。空穴是由满的valence shell中的电子的离开而产生的电子空缺。尽管磷原子带正电,但它有满的valence shell。因此离子化的磷原子带的电荷是不可移动的。

其他第5组的元素有和磷相同的效果。每个加入到晶体结构中的第5组的元素都会产生一个自由电子。因此以这种方式捐赠电子给半导体的元素被称为donors。砷,锑和磷在半导体工艺中被作为硅的donors。

在掺入大量的donors的半导体中占有优势的电子作为载流子。由于热运动产生的空穴还是有的,但他们的数量由于有大量的电子而减少。因为大量的电子增加了空穴捕获电子而复合的可能性。在N型硅中的大量的自由电子极大地增加了它的导电能力(并且极大地降低了它的电阻)。

掺入donors的半导体称作N型。重掺杂的N型硅有时也被标记为N+,轻掺杂的N型硅被标记为N-。加号和减号象征了donors的相对数目,而不是电荷。在N型硅中由于电子的数目非常大,他们被称为多数载流子。相似的,空穴在N型硅中被称为少数载流子。严格来说,本征半导体没有多数载流子也没有少数载流子,因为他们两种的数目是相等的。

掺硼的硅形成了另一种掺杂半导体。假设硅晶体结构中掺入了少量的硼原子(见图下方)。作为第3组的元素,硼有3个价电子。硼原子和它周围的4个硅原子共享价电子,但,由于它只有3个,它不能形成第4个键。结果,硼原子只有7个价电子。由此而形成的电子空缺就变成了一个空穴。这个空穴是可移动的,很快它就离开了硼原子。一旦空穴离开后,硼原子就由于在valence shell中多出来的一个电子而带负电。跟磷的情况一样,这个电荷是不可移动的,而且对导电能力没有影响。每个加入到硅中的硼原子能产生一个可移动的空穴。

其他的第3组的元素也能接受电子并产生空穴。技术困难阻止了其他第3组元素在硅的生产中的应用。但是,铟有时用来掺入锗。用作杂质的任何第3组元素都会从邻近的原子那里接受电子,所以这些元素被称为acceptors。掺有acceptors的半导体是P型的。重掺杂的P型硅有时被标记为P+,轻掺杂的P型硅被标记为P-。在P型硅中空穴是多数载流子,电子是少数载流子。半导体能同时掺入acceptors和donors。量大的杂质决定了硅的型号和载流子的浓度。因此能通过加入更多的donors来把P型半导体转换为N型半导体。同样的,也能通过加入更多的acceptors来把N型半导体转换为P型半导体。故意添加对立极性的杂质来转换半导体的型号被称为counterdoping。大多数现代的半导体是用有选择性的counterdoping硅来制作的,来形成一系列的P-和N-型区域。

如果采用极端的couterdoping,整个晶体结构将由相同比例的acceptor和donor原子组成。这两种原子的数目将会完全相等。最终的晶体只有很少的载流子,并表现为一个本征半导体。这种复合半导体确实存在。最熟悉的例子就是砷化镓,它是一种镓(第3组元素)和砷(第5组元素)的化合物。这种物质被称为III-V复合半导体。他们不仅有砷化镓,还有磷化镓,锑化铟和其他许多。许多III-V化合物是direct-bandgap半导体,有些被用来生产发光二极管和半导体激光。砷化镓也被用来生产非常高速的固态器件,包括集成电路。II-VI复合半导体由第2组和第6组元素的同比列混合物组成。硫化镉就是一种典型的用来生产光敏元件的II-VI化合物。其他II-VI化合物被用作阴极射线管中的磷。最后一种半导体包括IV-IV化合物,比如碳化硅,最近被小范围用来生产蓝光LEDs。

在所有的半导体中,只有硅有大批量,低成本生产集成电路的所需的物理特性。绝大多数固态器件是用硅生产的,其他半导体则只有很小的市场份额。

1) 本征半导体是一种完全纯净的、结构完整的半导体晶体。绝对零度时价带被价电子填满,导带是空的。

2) 随着温度的升高,本征载流子浓度迅速地增加,在本征时器件不能稳定工作。而对于掺杂半导体,室温附近载流子主要来源于杂质电离,在杂质全部电离的情况下,载流子浓度一定,器件就能稳定工作。所以,制造半导体器件一般都会用含有何当杂志的半导体材料,而且每一种半导体材料制成的器件都有一定的极限工作温度,超过这一温度后,器件就会失效。

3) 杂质在元素半导体 Si和Ge中的作用:是半导体Si\Ge的导电性能发生显著的改变。

希望能够帮到你,满意请采纳,谢谢o(∩_∩)o

还有疑问可以百度hi我!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/6211961.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-18
下一篇 2023-03-18

发表评论

登录后才能评论

评论列表(0条)

保存