半导体光催化机理优点

半导体光催化机理优点,第1张

半导体光催化剂大多是n型半导体材料(当前以为TiO2使用最广泛)都具有区别于金属或绝缘物质的特别的能带结构,即在价带(ValenceBand,VB)和导带(ConductionBand,CB)之间存在一个禁带(ForbiddenBand,BandGap)。由于半导体的光吸收阈值与带隙具有式K=1240/Eg(eV)的关系,因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子(e-)和空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。

光催化的原理是利用光来激发二氧化钛等化合物半导体,利用它们产生的电子和空穴来参加氧化—还原反应。 当能量大于或等于能隙的光照射到半导体纳米粒子上时,其价带中的电子将被激发跃迁到导带,在价带上留下相对稳定的空穴,从而形成电子—空穴对。

由于纳米材料中存在大量的缺陷和悬键,这些缺陷和悬键能俘获电子或空穴并阻止电子和空穴的重新复合。这些被俘获的电子和空穴分别扩散到微粒的表面,从而产生了强烈的氧化还原势。

光催化原理是基于光催化剂在光照的条件下具有的氧化还原能力,从而可以达到净化污染物、物质合成和转化等目的。通常情况下,光催化氧化反应以半导体为催化剂,以光为能量,将有机物降解为二氧化碳和水。

因此光催化技术作为一种高效、安全的环境友好型环境净化技术,对室内空气质量的改善已得到国际学术界的认可。

扩展资料:

光催化优点

*** 作简单、能耗低、无二次污染、效率高。

1、直接用空气中的氧气做氧化剂,反应条件温和(常温 常压) 。

2、可以将有机污染物分解为二氧化碳和水等无机小分子,净化效果彻底。

3、半导体光催化剂化学性质稳定,氧化还原性强,成本低,不存在吸附饱和现象,使用寿命长。

光催化净化技术具有室温深度氧,二次污染小,运行成本低和可望利用太阳光为反应光源等优点,所以光催化特别合适室内挥发有机物的净化,在深度净化方面显示出了巨大的应用潜力。 常见的光催化剂多为金属氧化物和硫化物,其中二氧化钛的综合性能最好,应用最广。

自1972年Fujishima和Honda发现在受辐照的二氧化钛上可以持续发生水的氧化还原反应,并产生氢气以来,人们对这一催化反应过程进行了大量研究。

结果表明,二氧化钛具有良好的抗光腐蚀性和催化活性,而且性能稳定,价廉易得,无毒无害,是目前公认的最佳光催化剂。该项技术不仅在废水净化处理方面具有巨大潜力,在空气净化方面同样具有广阔的应用前景。

参考资料来源:百度百科——光催化原理


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/6218307.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-18
下一篇 2023-03-18

发表评论

登录后才能评论

评论列表(0条)

保存