方舟手游工业研磨机图纸怎么获得

方舟手游工业研磨机图纸怎么获得,第1张

末日厨房。《方舟:生存进化》是Wildcard工作室宣布旗下生存手游,工业研磨机图纸可用来打磨石头资源转化为新的物质,可以制作各种粉状材料等,在末日厨房利用半导体铁矿石这层梯子能直接获得。

前些天,我国本土半导体设备传来好消息,中微半导体设备(上海)有限公司自主研制的5nm等离子体刻蚀机经台积电验证,性能优良,将用于全球首条5nm制程生产线。刻蚀机是芯片制造的关键装备之一,中微突破关键核心技术,让“中国制造”跻身刻蚀机国际第一梯队。

近年来,我国大陆半导体设备企业一直在努力追赶国际先进脚步。在多种设备领域有一定突破,除了上述中微半导体的5nm等离子体刻蚀机之外,有越来越多的产品可应用于14nm、7nm制程。

但是,国内设备与国外先进设备相比仍有较大差距,主要表现在两方面:一是有一定竞争力的产品在领先制程上的差距;二是部分产品完全没有竞争能力或尚未布局,比如国内光刻机落后许多代际,仅能达到90nm的光刻要求,国内探针台也处于研发阶段,尚未实现销售收入。

那么,在国家的扶持下,经过这么多年的发展,我国本土半导体设备各个细分领域的发展情况如何呢?相关企业都有哪些?发展到了什么程度呢?下面就来梳理一下。

   北方华创

北方华创由七星电子和北方微电子战略重组而成。七星甴子主营清洗机、氧化炉、 气体质量控制器(MFC)等半导体装备及精密甴子元器件等业务,此外七星甴子还是国内真空设备、 新能源锂甴装备重要供应商。北方微甴子主营刻蚀设备(Etch)、物理气相沉积设备(PVD)、化学气相沉积设备(CVD)三类设备。

2010 年 3 月,七星甴子在深交所上市。 2016 年 8 月,七星甴子与北方微甴子实现战略重组,成为中国规模最大、产品体系最丰富、涉及领域最广的高端半导体工艺设备供应商,开成功引迚国家集成甴路产业基金(大基金)等战略投资者,实现了产业与资本的融合。 公司实际控制人是北京甴控,隶属于国资委。

2017 年 2 月,七星甴子正式更名为北方华创 科技 集团股仹有限公司,完成了内部整合,推出全新品牉“北方华创”,开形成了半导体装备、真空装备、新能源锂甴装备和高精密甴子元器件四大业务板块加集团总部的“4+1”经营管理模式。

北方华创的半导体装备亊业群主要包括刻蚀机、 PVD、 CVD、氧化炉、扩散炉、清洗机及质量流量控制器(MFC)等 7 大类半导体设备及零部件,面向集成甴路、先进封装等 8 个应用领域,涵盖了半导体生产前段工艺制程中的除光刻机外的大部分兲键装备。 客户包括中芯国际、华力微甴子、长江存储等国内一线半导体制造企业,以及长甴 科技 、 晶斱 科技 、华天 科技 等半导体封装厂商。

重组之后,北方华创业绩快速增长。2017 年实现营业收入 22.23 亿元,同比增长37.01%,归母净利润 1.26 亿元,同比增长 35.21%。 根据公司 2018 年半年报业绩快报,2018 年上半年公司实现营业收入13.95 亿元,同比增长 33.44%, 归母净利润 1.19 亿元,同比增长 125.44%。 随着下游晶圆厂投资加速, 公司半导体设备等觃模持续扩张。

长川 科技

长川 科技 是国内集成电路封装测试、晶圆制造及芯片设计环节测试设备主要供应商。 半导体测试设备主要包括分选机、 测试机和探针台三大类。自2008年4月成立以来,该公司率先实现了半导体测试设备(分选机和测试机) 的国产化, 并获得国内外众多一流集成电路企业的使用和认可。

该公司于 2012 年 2 月承担并完成国家“十二五”规划重大专项“极大规模集成电路制造装备及成套工艺”中的高端封装设备与材料应用工程项目,并于 2015 年 3 月获得国家集成电路产业基金投资。

该公司的测试机和分选机在核心性能指标上已达到国内领先、接近国外先进水平,同时售价低于国外同类型号产品,具备较高的性价比优势。 公司产品已进入国内主流封测企业, 如天水华天、 长电 科技 、 杭州士兰微、 通富微电等。 2017 年,该公司对外积极开拓市场, 设立台湾办事处,拓展台湾市场。

2013~2017年,长川 科技 营收实现了由 4,341 万元到 1.80 亿元的跨越,复合增速达39.75%。 2017 年,归属母公司净利润由992万元增长至 5,025 万元, 复合增速达31.48%。

中微半导体

中微半导体成立于 2004 年,是一家微加工高端设备公司, 经营范围包括研发薄膜制造设备和等离子体刻蚀设备、大面积显示屏设备等。该公司管理层技术底蕴深厚,大多有任职于应用材料、LAM和英特尔等全球半导体一流企业的经验。

中微半导体先后承担并圆满完成 65-45 纳米、 32-22 纳米、22-14 纳米等三项等离子介质刻蚀设备产品研制和产业化。 公司自主研发的等离子体刻蚀设备 Primo D-RIE 可用于加工 64/45/28 纳米氧化硅、氮化硅等电介质材料,介质刻蚀设备 Primo AD-RIE 可用于 22nm 及以下芯片加工,均已进入国内先进产线。中微半导体的介质刻蚀机已经完成了5nm 的生产。

晶盛机电

晶盛机电是一家专业从事半导体、光伏设备研发及制造的高新技术企业,是国内技术领先的晶体硅生长设备供应商。该公司专注于拥有自主品牌的晶体硅生长设备及其控制系统的研发、制造和销售,先后开发出拥有完全自主知识产权的直拉式全自动晶体生长炉、铸锭多晶炉产品。

该公司立足于“提高光电转化效率、降低发电成本”的光伏技术路线,实现了硅晶体生长“全自动、高性能、高效率、低能耗”国内领先、国际先进的技术优势。全自动单晶炉系列产品和 JSH800 型气致冷多晶炉产品分别被四部委评为国家重点新产品。同时公司积极向光伏产业链装备进行延伸,2015 年成功开发并销售了新一代单晶棒切磨复合一体机、单晶硅棒截断机、多晶硅块研磨一体机、多晶硅块截断机等多种智能化装备,并布局高效光伏电池装备和组件装备的研发。

该公司的晶体生长设备特别是单晶硅生长炉销售形势较好,主要是单晶光伏的技术路线获得认可,随着下游厂商的扩产,单晶的渗透率也逐步提升,带来对单晶硅生长炉的需求增加,该类产品收入已经占营业收入的 81%。

该公司主营业务伴随国内光伏产业的上升发展,给主营业务收入和利润带来显着增长,近两年的增长率均在 80%以上,另外,其毛利率水平和净利率水平也基本维持稳定。

上海微电子

上海微电子装备有限公司成立于2002年,主要致力于大规模工业生产的投影光刻机研发、生产、销售与服务,该公司产品可广泛应用于IC制造与先进封装、MEMS、TSV/3D、TFT-OLED等制造领域。

   该公司主要产品包括:

600扫描光刻机系列—前道IC制造

基于先进的扫描光刻机平台技术,提供覆盖前道IC制造90nm节点以上大规模生产所需,包含90nm、130nm和280nm等不同分辨率节点要求的ArF、KrF及i-line步进扫描投影光刻机。该系列光刻机可兼容200mm和300mm硅片。

500步进光刻机系列—后道IC、MEMS制造

基于先进的步进光刻机平台技术,提供覆盖后道IC封装、MEMS/NEMS制造的步进投影光刻机。该系列光刻机采用高功率汞灯的ghi线作为曝光光源,其先进的逐场调焦调平技术对薄胶和厚胶工艺,以及TSV-3D结构等具有良好的自动适应性,并通过采用具有专利的图像智能识别技术,无需专门设计特殊对准标记。该系列设备具有高分辨率、高套刻精度和高生产率等一系列优点,可满足用户对设备高性能、高可靠性、低使用成本(COO)的生产需求。

200光刻机系列—AM-OLED显示屏制造

200系列投影光刻机综合采用先进的步进光刻机平台技术和扫描光刻机平台技术,专用于新一代AM-OLED显示屏的TFT电路制造。该系列光刻机不仅可用于基板尺寸为200mm × 200mm的工艺研发线,也可用于基板尺寸为G2.5(370mm × 470mm)和G4.5(730mm × 920mm)的AM-OLED显示屏量产线。

硅片边缘曝光机系列——芯片级封装工艺应用

SMEE开发的硅片边缘曝光机提供了满足芯片级封装工艺中对硅片边缘进行去胶处理的能力,设备可按照客户要求配置边缘曝光宽度、硅片物料接口形式、曝光工位等不同形式。设备同时兼容150mm、200mm和300mm等三种不同规格的硅片,边缘曝光精度可到达0.1mm。设备配置了高功率光源,具有较高的硅片面照度,提高了设备产率。

至纯 科技

至纯 科技 成立于 2000 年, 主要为电子、生物医药及食品饮料等行业的先进制造业企业提供高纯工艺系统的整体解决方案, 产品为高纯工艺设备和以设备组成的高纯工艺系统,覆盖设计、加工制造、安装以及配套工程、检测、厂务托管、标定和维护保养等增值服务。

该公司在 2016年前产品约一半收入来自医药类行业,光伏、 LED 行业及半导体行业收入占比较小。 2016年以来,公司抓住半导体产业的发展机遇,逐步扩大其产品在半导体领域的销售占比, 2016和 2017 年来自半导体领域收入占公司营业收入比重分别为 50%和 57%,占据公司营业收入半壁江山。主攻半导体清洗设备。

该公司于 2015 年开始启动湿法工艺装备研发, 2016 年成立院士工作站, 2017 年成立独立的半导体湿法事业部至微半导体,目前已经形成了 UltronB200 和 Ultron B300 的槽式湿法清洗设备和 Ultron S200 和 Ultron S300 的单片式湿法清洗设备产品系列, 并取得 6 台的批量订单。

   精测电子

武汉精测电子技术股份有限公司创立于 2006 年 4 月,并于 2016 年 11 月在创业板上市。公司主要从事平板显示检测系统的研发、生产与销售,在国内平板显示测试领域处于绝对领先地位, 主营产品包括:模组检测系统、面板检测系统、OLED 检测系统、AOI光学检测系统和平板显示自动化设备。近几年来,该公司积极对外投资,设立多家子公司,业务规模迅速扩张,进一步完善了产业布局。

该公司成立初期主要专注于基于电讯技术的信号检测,是国内较早开发出适用于液晶模组生产线的 3D 检测、基于 DP 接口的液晶模组生产线的检测和液晶模组生产线的 Wi-Fi 全无线检测产品的企业,目前该公司的 Module 制程检测系统的产品技术已处于行业领先水平。

2014 年,精测电子积极研发 AOI 光学检测系统和平板显示自动化设备,引进了宏濑光电和台湾光达关于 AOI 光学检测系统和平板显示自动化设备相关的专利等知识产权,使其在 Array制程和 Cell 制程的检测形成自有技术,初步形成了“光、机、电”技术一体化的优势。

精测电子2018年上半年财务报告显示,该公司收入主要来自 AOI 光学检测系统业务,占比 45.49%,毛利占比 41.94%;其次是模组检测系统业务,收入占比 23.33%,毛利占比 27.68%; OLED 检测系统和平面显示自动化设备收入占比分别为 14.29%和12.30%,毛利占比为 14.26%和 10.28%。

   电子 科技 集团45所

中国电子 科技 集团公司第45研究所创立于1958年,2010年9月,中央机构编制委员会办公室批准45所第一名称更改为“北京半导体专用设备研究所”,第二名称仍保持“中国电子 科技 集团公司第四十五研究所”不变。

45所是国内专门从事军工电子元器件关键工艺设备技术、设备整机系统以及设备应用工艺研究开发和生产制造的国家重点军工科研生产单位。

45所以光学细微加工和精密机械与系统自动化为专业方向,以机器视觉技术、运动控制技术、精密运动工作台与物料传输系统技术、精密零部件设计优化与高效制造技术、设备应用工艺研究与物化技术、整机系统集成技术等六大共性关键技术为支撑,围绕集成电路制造设备、半导体照明器件制造设备、光伏电池制造设备、光电组件制造和系统集成与服务等五个重点技术领域,开发出了电子材料加工设备、芯片制造设备、光/声/电检测设备、化学处理设备、先进封装设备、电子图形印刷设备、晶体元器件和光伏电池等八大类工艺设备和产品,服务于集成电路、光电元器件与组件、半导体照明和太阳能光伏电池四大行业.

   上海睿励

睿励科学仪器(上海)有限公司是于2005年创建的合资公司,致力于研发、生产和销售具有自主知识产权的集成电路生产制造工艺装备产业中的工艺检测设备。主要生产用于65/28/14nm制程工艺控制的膜厚测量设备。

沈阳芯源

沈阳芯源微电子设备有限公司成立于2002年,由中科院沈阳自动化研究所引进国外先进技术投资创建。

芯源公司自主开发的单片匀胶机、显影机、喷胶机、去胶机、清洗机、湿法刻蚀机等设备广泛应用于半导体、先进封装、MEMS、LED等领域。

1.LED领域匀胶显影机:应用于LED芯片制造、PSS(图形化衬底)、MEMS、HCPV(高聚光型太阳能电池)、Waveguide(光波导)工艺的匀胶显影等工艺制程。

2.高端封装全自动涂胶显影机:广泛应用于先进封装BGA、Flip-Chip、WSP、CSP制程的高黏度PR、PI、Epoxy的涂敷、显影工艺制程。

3.高端封装全自动喷雾式涂胶机: 广泛应用于TSV、MEMS、WLP等工艺制程。

4.单片湿法刻蚀机/去胶机/清洗机:广泛应用于先进封装BGA、Flip-Chip、WSP、CSP制程的刻蚀、去胶、清洗工艺制程。

5.前道堆叠式全自动涂胶显影机:应用于90nm光刻工艺、BARC涂覆、SOC、SOD、SOG等工艺制程。

   盛美半导体

盛美半导体(ACM Research)是国内半导体清洗设备主要供应商,于1998年在美国硅谷成立,主要研发电抛光技术,2006 年成立上海子公司,专注于半导体清洗设备。2017年11月4日公司在美国纳斯达克上市。2017年公司营业收入3650万美元,同比增长33.2%,其中90%以上的营业收入来自于半导体清洗设备。2017 年研发投入占营业收入比例为14.1%。

由于声波清洗可能会造成晶片损伤,行业公司大多转向研发其他技术,盛美半导体另辟蹊径研发出空间交变相移兆声波清洗(SAPS)和时序能激气泡震荡兆声波清洗(TEBO)两项专利技术,可以实现无伤清洗。公司的清洗设备目前已经进入 SK 海力士、长江存储和上海华力等先进产线。

   天津华海清科

天津华海清科机电 科技 有限公司成立于2013年,是天津市政府与清华大学践行“京津冀一体化”国家战略,为推动我国化学机械抛光(CMP)技术和设备产业化成立的高 科技 企业。

华海清科主要从事CMP设备和工艺及配套耗材的研发、生产、销售与服务,核心团队成员来自清华大学摩擦学国家重点实验室及业内专业人才,产品可广泛应用于极大规模集成电路制造、封装、微机电系统制造、晶圆平坦化、基片制造等领域。

中电科装备

中电科电子装备集团有限公司成立于2013年,是在中国电子 科技 集团公司2所、45所、48所基础上组建成立的二级成员单位,属中国电子 科技 集团公司独资公司,注册资金21亿元,该公司是我国以集成电路制造装备、新型平板显示装备、光伏新能源装备以及太阳能光伏产业为主的科研生产骨干单位,具备集成电路局部成套和系统集成能力以及光伏太阳能产业链整线交钥匙能力。

多年来,利用自身雄厚的科研技术和人才优势,形成了以光刻机、平坦化装备(CMP)、离子注入机、电化学沉积设备(ECD)等为代表的微电子工艺设备研究开发与生产制造体系,涵盖材料加工、芯片制造、先进封装和测试检测等多个领域;通过了ISO9001、GJB9001A、UL、CE、TüV、NRE等质量管理体系与国际认证。

   沈阳拓荆

沈阳拓荆 科技 有限公司成立于2010年4月,是由海外专家团队和中科院所属企业共同发起成立的国家高新技术企业。拓荆公司致力于研究和生产薄膜设备,两次承担国家 科技 重大专项。2016年、2017年连续两年获评“中国半导体设备五强企业”。

该公司拥有12英寸PECVD(等离子体化学气相沉积设备)、ALD(原子层薄膜沉积设备)、3D NAND PECVD(三维结构闪存专用PECVD设备)三个完整系列产品,技术指标达到国际先进水平。产品广泛应用于集成电路前道和后道、TSV封装、光波导、LED、3D-NAND闪存、OLED显示等高端技术领域。

   华海清科

天津华海清科机电 科技 有限公司成立于2013年,是天津市政府与清华大学践行“京津冀一体化”国家战略,为推动我国化学机械抛光(CMP)技术和设备产业化成立的高 科技 企业。

华海清科主要从事CMP设备和工艺及配套耗材的研发、生产、销售与服务,核心团队成员来自清华大学摩擦学国家重点实验室及业内专业人才,产品可广泛应用于极大规模集成电路制造、封装、微机电系统制造、晶圆平坦化、基片制造等领域。

以上就是我国大陆地区的主要半导体设备生产企业。

随着我国半导体产业的快速发展,对半导体设备的需求量越来越大,而本土半导体设备企业面临着供给与需求错配的情况。一方面,国内的半导体设备需求随着下游产线的扩张而迅速增加,大陆的半导体设备需求占全球半导体设备需求的比重较高;但另一方面,本土的设备供给存在着水平较为落后,国产化率不高的情况。

针对这一情形,在国家的大力支持下,国内设备企业需要积极布局,以在各细分设备领域实现突破。

随着绿色低碳战略的不断推进,提升能源利用效率和能源转换效率已经成为各行各业的共识,如何利用现代化新技术建成可循环的高效、高可靠性的能源网络,无疑是当前各国重点关注的问题。

值此背景下,以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体成为市场聚焦的新赛道。根据Yole预测数据, 2025年全球以半绝缘型衬底制备的GaN器件市场规模将达到20亿美元,2019-2025年复合年均增长率高达12%! 其中,军工和通信基站设备是GaN器件主要的应用市场,2025年市场规模分别为11.1亿美元和7.31亿美元

全球以导电型碳化硅衬底制备的SiC器件市场规模到2025年将达到25.62亿美元,2019- 2025年复合年均增长率高达30%! 其中,新能源汽车和光伏及储能是SiC器件主要的应用市场, 2025年市场规模分别为15.53亿美元和3.14亿美元。

本文中,我们将针对第三代半导体产业多个方面的话题,与国内外该领域知名半导体厂商进行探讨解析。

20世纪50年代以来,以硅(Si)、锗(Ge)为代的第一代半导体材料的出现,取代了笨重的电子管,让以集成电路为核心的微电子工业的发展和整个IT产业的飞跃。人们最常用的CPU、GPU等产品,都离不开第一代半导体材料的功劳。可以说是由第一代半导体材料奠定了微电子产业的基础。

然而由于硅材料的带隙较窄、电子迁移率和击穿电场较低等原因,硅材料在光电子领域和高频高功率器件方面的应用受到诸多限制。因此,以砷化镓(GaAs)为代表的第二代半导体材料开始崭露头角,使半导体材料的应用进入光电子领域,尤其是在红外激光器和高亮度的红光二极管方面。与此同时,4G通信设备因为市场需求增量暴涨,也意味着第二代半导体材料为信息产业打下了坚实基础。

在第二代半导体材料的基础上,人们希望半导体元器件具备耐高压、耐高温、大功率、抗辐射、导电性能更强、工作速度更快、工作损耗更低特性,第三代半导体材料也正是基于这些特性而诞生。

笔者注意到,对于第三代半导体产业各家半导体大厂的看法也重点集中在 “高效”、“降耗”、“突破极限” 等核心关键词上。

安森美中国汽车OEM技术负责人吴桐博士 告诉笔者: “第三代半导体优异的材料特性可以突破硅基器件的应用极限,同时带来更好的性能,这也是未来功率半导体最主流的方向。” 他表示随着第三代半导体技术的普及,传统成熟的行业设计都会有突破点和优化的空间。

英飞凌科技电源与传感系统事业部大中华区应用市场总监程文涛 则从能源角度谈到,到2025年,全球可再生能源发电量有望超过燃煤发电量,将推动第三代半导体器件的用量迅速增长。 在用电端,由于数据中心、5G通信等场景用电量巨大,节电降耗的重要性凸显,也将成为率先采用第三代半导体器件做大功率转换的应用领域。

第三代半导体材料区别于前两代半导体材料最大的区别就在于带隙的不同。 第一代半导体材料属于间接带隙,窄带隙第二代半导体材料属于直接带隙,同样也是窄带隙二第三代半导体材料则是全组分直接带隙,宽禁带。

和前两代半导体材料相比,更宽的禁带宽度允许材料在更高的温度、更强的电压与更快的开关频率下运行。

随着碳化硅、氮化镓等具有宽禁带特性(Eg>2.3eV)的新兴半导体材料相继出现,世界各国陆续布局、产业化进程快速崛起。具体来看:

与硅相比, 碳化硅拥有更为优越的电气特性 : 

1.耐高压 :击穿电场强度大,是硅的10倍,用碳化硅制备器件可以极大地 提高耐压容量、工作频率和电流密度,并大大降低器件的导通损耗

2.耐高温 :半导体器件在较高的温度下,会产生载流子的本征激发现象,造成器件失效。禁带宽度越大,器件的极限工作温度越高。碳化硅的禁带接近硅的3倍,可以保证碳化硅器件在高温条件下工作的可靠性。硅器件的极限工作温度一般不能超过300℃,而碳化硅器件的极限工作温度可以达到600℃以上。同时,碳化硅的热导率比硅更高,高热导率有助于碳化硅器件的散热,在同样的输出功率下保持更低的温度,碳化硅器件也因此对散热的设计要求更低,有助于实现设备的小型化

3.高频性能 :碳化硅的饱和电子漂移速率是硅的2倍,这决定了碳化硅器件可以实现更高的工作频率和更高的功率密度。基于这些优良的特性,碳化硅衬底的使用极限性能优于硅衬底,可以满足高温、高压、高频、大功率等条件下的应用需求,已应用于射频器件及功率器件。

氮化镓则具有宽禁带、高电子漂移速度、高热导率、耐高电压、耐高温、抗腐蚀、耐辐照等突出优点。 尤其是在光电子器件领域,氮化镓器件作为LED照明光源已广泛应用,还可制备成氮化镓基激光器在微波射频器件方面,氮化镓器件可用于有源相控阵雷达、无线电通信、基站、卫星等军事 或者民用领域氮化镓也可用于功率器件,其比传统器件具有更低的电源损耗。

半导体行业有个说法: “一代材料,一代技术,一代产业” ,在第三代半导体产业规模化出现之前,也还存在着不少亟待解决的技术难题。

第三代半导体全产业链十分复杂,包括衬底→外延→设计→制造→封装。 其中,衬底是所有半导体芯片的底层材料,起到物理支撑、导热、导电等作用外延是在衬底材料上生长出新的半导体晶层,这些外延层是制造半导体芯片的重要原料,影响器件的基本性能设计包括器件设计和集成电路设计,其中器件设计包括半导体器件的结构、材料,与外延相关性很大制造需要通过光刻、薄膜沉积、刻蚀等复杂工艺流程在外延片上制作出设计好的器件结构和电路封装是指将制造好的晶圆切割成裸芯片。

前两个环节衬底和外延生长正是第三代半导体生产工艺及其难点所在。我们重点挑选碳化硅、氮化镓两种典型的第三代半导体材料来看,它们的生产制备到底还面临哪些问题。

从碳化硅来看,还需要“降低衬底生长缺陷,以及提高工艺效率” 。首先碳化硅单晶制备目前最常用的是物理气相输运法(PVT)或籽晶的升华法,而碳化硅单晶在形成最终的短圆柱状之前,还需要通过机械加工整形、切片、研磨、抛光等化学机械抛光和清洗等工艺才能成为衬底材料。

这一机械、化学制造过程存在着加工困难、制造效率低、制造成本高等问题。此外,如果再加上考虑单晶加工的效率和成本问题,那还能够保障晶片具备良好的几何形貌,如总厚度变化、翘曲度、变形,而且晶片表面质量(粗糙度、划伤等)是否过关等,这都是碳化硅衬底制备中的巨大挑战。

此外,碳化硅材料是目前仅次于金刚石硬度的材料,材料的机械加工主要以金刚石磨料为基础切割线、切割刀具、磨削砂轮等工具。这些工具的制备难度大,使用寿命短,加工成本高,为了延长工具寿命、提高加工质量,往往会采用微量或极低速进给量,这就牺牲了碳化硅材料制备的整体生产效率。

对于氮化镓来说,则更看重“衬底与外延材料需匹配”的难题 。由于氮化镓在高温生长时“氮”的离解压很高,很难得到大尺寸的氮化镓单晶材料,当前大多数商业器件是基于异质外延的,比如蓝宝石、AlN、SiC和Si材料衬底来替代氮化镓器件的衬底。

但问题是这些异质衬底材料和氮化镓之间的晶格失配和热失配非常大,晶格常数差异会导致氮化镓衬底和外延层界面处的高密度位错缺陷,严重的话还会导致位错穿透影响外延层的晶体质量。这也就是为什么氮化镓更看重衬底与外延材料需匹配的难点。

在落地到利用第三代半导体材料去解决具体问题时,程文涛告诉OFweek维科网·电子工程, 英飞凌的碳化硅器件所采用的沟槽式结构解决了大多数功率开关器件的可靠性问题。

比如现在大多数功率开关器件产品采用的是平面结构,难以在开关的效率上和长期可靠性上得到平衡。采用平面结构,如果要让器件的效率提高,给它加点电,就能导通得非常彻底,那么它的门级就需要做得非常薄,这个很薄的门级结构,在长期运行的时候,或者在大批量运用的时候,就容易产生可靠性的问题。

如果要把它的门级做的相对比较厚,就没办法充分利用沟道的导通性能。而采用沟槽式的做法就能够很好地解决这两个问题。

吴桐博士则从产业化的角度提出, 第三代半导体技术的难点在于有关设计技术和量产能力的协调,以及对长期可靠性的保障。尤其是量产的良率,更需要持续性的优化,降低成本,提升可靠性。

观察当前半导体市场可以发现,占据市场九成以上的份额的主流产品依然是硅基芯片。

但近些年来,“摩尔定律面临失效危机”的声音不绝于耳,随着芯片设计越来越先进,芯片制造工艺不断接近物理极限和工程极限,芯片性能提升也逐步放缓,且成本不断上升。

业界也因此不断发出质疑,未来芯片的发展极限到底在哪,一旦硅基芯片达到极限点,又该从哪个方向下手寻求芯片效能的提升呢?笔者通过采访发现,国内外厂商在面对这一问题时,虽然都表达出第三代半导体产业未来值得期待,但也齐齐提到在这背后还需要重点解决的成本问题。

“目前硅基半导体从架构上、从可靠性、从性能的提升等方面,基本上已经接近了物理极限。第三代半导体将接棒硅基半导体,持续降低导通损耗,在能源转换的领域作出贡献,” 程文涛也为笔者描述了当前市场上的一种现象:可能会存在一些定价接近硅基半导体的第三代半导体器件,但并不代表它的成本就接近硅基半导体。因为那是一种商业行为,就是通过低定价来催生这个市场。

以目前的工艺来讲,第三代半导体的成本还是远高于硅基半导体 ,程文涛表示:“至少在可见的将来,第三代半导体不会完全取代第一代半导体。因为从性价比的角度来说,在非常宽的应用范围中,硅基半导体目前依然是不二之选。第三代半导体目前在商业化上的瓶颈就是成本很高,虽然在迅速下降,但依然远高于硅基半导体。”

作为中国碳化硅功率器件产业化的倡导者之一,泰科天润同样也表示对第三代半导体产业发展的看好。

虽然碳化硅单价目前比硅高不少,但从系统整体的角度来看,可以节约电感电容以及散热片。如果是大功率电源系统整体角度看成本未必更高,同时还能更好地提升效率。 这也是为什么现阶段虽然单器件碳化硅比硅贵,依然不少领域客户已经批量使用了。

从器件的角度来看,碳化硅从四寸过度到六寸,未来往八寸甚至十二寸发展,碳化硅器件的成本也将大幅度下降。据泰科天润介绍,公司新的碳化硅六寸线于去年就已经实现批量出货,为客户提供更高性价比的产品,有些产品实现20-30%的降价幅度。除此之外,泰科天润耗时1年多成功开发了碳化硅减薄工艺,在Vf水平不变的情况下,可以缩小芯片面积,进一步为客户提供性价比更高的产品。

泰科天润还告诉笔者:“这两年随着国外友商的缺货或涨价,比如一些高压硅器件,这些领域已经出现碳化硅取代硅的现象。随着碳化硅晶圆6寸产线生产技术的成熟,8寸晶圆的发展,碳化硅器件有望与硅基器件达到相同的价格水平。”

吴桐博士认为, 目前来看在不同的细分市场,第三代半导体跟硅基器件是一个很好的互补,也是价钱vs性能的一个平衡。随着第三代半导体的成熟以及成本的降低,最终会慢慢取代硅基产品成为主流方案。

那么对于企业而言,该如何发挥第三代半导体的综合优势呢?吴桐博士表示,于安森美而言,首先是要垂直整合,保证稳定的供应链,可长期规划的产能布局以及达到客观的投资回报率其次是在技术研发上继续发力,比如Rsp等参数,相比行业水准,实现用更小的半导体面积实现相同功能,这样单个器件成本得以优化第三是持续地提升FE/BE良率,等效的降低成本第四是与行业大客户共同开发定义新产品,保证竞争力以及稳定的供需关系最后也是重要的一点,要帮助行业共同成长,蛋糕做大,产能做强,才能使得单价有进一步下降的空间。

第三代半导体产业究竟掀起了多大的风口?根据《2020“新基建”风口下第三代半导体应用发展与投资价值白皮书》内容:2019年我国第三代半导体市场规模为94.15亿元,预计2019-2022年将保持85%以上平均增长速度,到2022年市场规模将达到623.42亿元。

其中,第三代半导体衬底市场规模从7.86亿元增长至15.21亿元,年复合增速为24.61%,半导体器件市场规模从86.29亿元增长至608.21亿元,年复合增速为91.73%。

得益于第三代半导体材料的优良特性,它在 光电子、电力电子、通讯射频 等领域尤为适用。具体来看:

光电子器件 包括发光二极管、激光器、探测器、光子集成电路等,多用于5G通信领域,场景包括半导体照明、智能照明、光纤通信、光无线通信、激光显示、高密度存储、光复印打印、紫外预警等

电力电子器件 包括碳化硅器件、氮化镓器件,多用于新能源领域,场景包括消费电子、新能源汽车、工业、UPS、光伏逆变器等

微波射频器件 包括HEMT(高电子迁移率晶体管)、MMIC(单片微波集成电路)等,同样也是用在5G通信领域,不过场景则更加高端,包括通讯基站及终端、卫星通讯、军用雷达等。

现阶段,欧美日韩等国第三代半导体企业已形成规模化优势,占据全球市场绝大多数市场份额。我国高度重视第三代半导体发展,在研发、产业化方面出台了一系列支持政策。国家科技部、工信部等先后开展了“战略性第三代半导体材料项目部署”等十余个专项,大力支持第三代半导体技术和产业发展。

早在2014年,工信部发布的《国家集成电路产业发展推进纲要》提出设立国家产业投资基金,重点支持集成电路等产业发展,促进工业转型升级,同时鼓励社会各类风险投资和股权投资基金进入集成电路领域在去年全国人大发布《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中,进一步强调培育先进制造业集群,推动集成电路、航空航天等产业创新发展。瞄准人工智能、量子信息、集成电路等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。

具体来看当前主要应用领域的发展情况:

1.新能源汽车

新能源汽车行业是未来市场空间巨大的新兴市场,全球范围内新能源车的普及趋势明朗。随着电动汽车的发展,对功率半导体器件需求量日益增加,成为功率半导体器件新的经济增长点。得益于碳化硅功率器件的高可靠性及高效率特性,在车载级的电机驱动器、OBC及DC/DC部分,碳化硅器件的使用已经比较普遍。对于非车载充电桩产品, 由于成本的原因,目前使用比例还相对较低,但部分厂商已开始利用碳化硅器件的优势,通过降低冷却等系统的整体成本找到了市场。

2.光伏

光伏逆变器曾普遍采用硅器件,经过40多年的发展,转换效率和功率密度等已接近理论极限。碳化硅器件具有低损耗、高开关频率、高适用性、降低系统散热要求等优点,将在光伏新能源领域得到广泛应用。例如,在住宅和商业设施光伏系统中的组串逆变器里,碳化硅器件在系统级层面带来成本和效能的好处。

3.轨道交通

未来轨道交通对电力电子装置,比如牵引变流器、电力电子电压器等提出了更高的要求。采用碳化硅功率器件可以大幅度提高这些装置的功率密度和工作效率,有助于明显减轻轨道交通的载重系统。目前,受限于碳化硅功率器件的电流容量,碳化硅混合模块将首先开始替代部分硅IGBT模块。未来随着碳化硅器件容量的提升,全碳化硅模块将在轨道交通领域发挥更大的作用。

4.智能电网

目前碳化硅器件已经在中低压配电网开始了应用。未来更高电压、更大容量、更低损耗的柔性输变电将对万伏级以上的碳化硅功率器件具有重大需求。碳化硅功率器件在智能电网的主要应用包括高压直流输电换流阀、柔性直流输电换流阀、灵活交流输电装置、高压直流断路器、电力电子变压器等装置中。

第三代半导体自从在2021年被列入十四五规划后,相关概念持续升温,迅速成为超级风口,投资热度高居不下。

时常会听到业内说法称,第三代半导体国内外都是同一起跑线出发,目前大家差距相对不大,整个产业发展仍处于爆发前的“抢跑”阶段,对国内而言第三代半导体材料更是有望成为半导体产业的“突围先锋”,但事实真的是这样吗?

从起步时间来看,欧日美厂商率先积累专利布局,比如 英飞凌一直走在碳化硅技术的最前沿,从30年前(1992年)开始包含碳化硅二极管在内的功率半导体的研发,在2001年发布了世界上第一款商业化碳化硅功率二极管 ,此后至今英飞凌不断推出了各种性能优异的碳化硅功率器件。除了产品本身,英飞凌在2018年收购了Siltectra,致力于通过冷切割技术优化工艺流程,大幅提高对碳化硅原材料的利用率,有效降低碳化硅的成本。

安森美也是第三代半导体产业布局中的佼佼者,据笔者了解, 安森美通过收购上游碳化硅供应企业GTAT实现了产业链的垂直整合,确保产能和质量的稳定。同时借助安森美多年的技术积累以及几年前收购Fairchild半导体基因带来的技术补充,安森美的碳化硅技术已经进入第三代,综合性能在业界处于领先地位 。目前已成为世界上少数提供从衬底到模块的端到端碳化硅方案供应商,包括碳化硅球生长、衬底、外延、器件制造、同类最佳的集成模块和分立封装方案。

具体到技术上, 北京大学教授、宽禁带半导体研究中心主任沈波 也曾提出,国内第三代半导体和国际上差距比较大,其中很重要的领域之一是碳化硅功率电子芯片。这一块国际上已经完成了多次迭代,虽然8英寸技术还没投入量产,但是6英寸已经是主流技术,二极管已经发展到了第五代,三极管也发展到了第三代,IGBT也已进入产业导入前期。

另外车规级的碳化硅MOSFET模块在意法半导体率先通过以后,包括罗姆、英飞凌、科锐等国际巨头也已通过认证,国际上车规级的碳化硅芯片正逐渐走向规模化生产和应用。反观国内,目前真正量产的主要还是碳化硅二极管,工业级MOSFET模块估计到明年才能实现规模量产,车规级碳化硅模块要等待更长时间才能量产。

泰科天润也直言,国内该领域仍处于后发追赶阶段:器件方面,从二极管的角度, 国产碳化硅二极管基本上水平和国外差距不大,但是碳化硅MOSFET国内外差距还是有至少1-2代的差距 可靠性方面,国外碳化硅产品市场应用推广较早,积累了更加丰富的应用经验,对产品可靠性的认知,定义以及关联解决可靠性的方式都走得更前一些,国内厂家也在推广市场的过程中逐步积累相关经验产业链方面,国外厂家针对碳化硅的材料优势,相关匹配的产业链都做了对应的优化设计,使之能更加契合的体现碳化硅的材料优势。

OFweek维科网·电子工获悉,泰科天润在湖南新建的碳化硅6寸晶圆产线,第一期60000片/六寸片/年。此产线已经于去年实现批量出货,2022年始至4月底已经接到上亿元销售订单。 作为国内最早从事碳化硅芯片生产研发的公司,泰科天润积累了10余年的生产经验,针对特定领域可以结合自身的研发,生产和工艺一体化,快速为客户开发痛点新品 ,例如公司全球首创的史上最小650V1A SOD123,专门针对解决自举驱动电路已经替换高压小电流Si FRD解决反向恢复的痛点问题而设计。

虽然说IDM方面,我国在碳化硅器件设计方面有所欠缺,少有厂商涉及于此,但后发追赶者也不在少数。

就拿碳化硅产业来看,单晶衬底方面国内已经开发出了6英寸导电性碳化硅衬底和高纯半绝缘碳化硅衬底。 山东天岳、天科合达、河北同光、中科节能 均已完成6英寸衬底的研发,中电科装备研制出6英寸半绝缘衬底。

此外,在模块、器件制造环节我国也涌现了大批优秀的企业,包括 三安集成、海威华芯、泰科天润、中车时代、世纪金光、芯光润泽、深圳基本、国扬电子、士兰微、扬杰科技、瞻芯电子、天津中环、江苏华功、大连芯冠、聚力成半导体 等等。

OFweek维科网·电子工程认为,随着我国对新型基础建设的布局展开和“双碳”目标的提出,碳化硅和氮化稼等第三代半导体的作用也愈发凸显。

上有国家支持政策,下有新能源汽车、5G通信等旺盛市场需求, 我国第三代半导体产业也开始由“导入期”向“成长期”过渡,初步形成从材料、器件到应用的全产业链。但美中不足在于整体技术水平还落后世界顶尖水平好几年,因此在材料、晶圆、封装及应用等环节的核心关键技术和可靠性、一致性等工程化应用问题上还需进一步完善优化。

当前,全球正处于新一轮科技和产业革命的关键期,第三代半导体产业作为新一代电子信息技术中的重点组成部分,为能源革命带来了深刻的改变。

在此背景下,OFweek维科网·电子工程作为深耕电子产业领域的资深媒体,对全球电子产业高度关注,紧跟产业发展步伐。为了更好地促进电子工程师之间技术交流,推动国内电子行业技术升级,我们继续联袂数十家电子行业企业技术专家,推出面向电子工程师技术人员的专场在线会议  「OFweek 2022 (第二期)工程师系列在线大会」  。

本期在线会议将于6月22日在OFweek官方直播平台举办,将邀请国内外知名电子企业技术专家,聚焦半导体领域展开技术交流,为各位观众带来技术讲解、案例分享和方案展示。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/6224287.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-18
下一篇 2023-03-18

发表评论

登录后才能评论

评论列表(0条)

保存