半导体存储电路(二)

半导体存储电路(二),第1张

触发器 VS 锁存器 : 触发器增加了一个触发信号输入端(即时钟信号,CLK),只有当这个时钟信号到来的时候,触发器蔡按照输入的置1回、置0信号置成相应的状态并保持下去。

C1表示CLK是编号为1的一个控制信号(因为没有小圆圈,表示高电平有效, 即CLK=1时触发器输出端才受输入信号的控制 )

1S和1R表示受C1控制的两个输入信号

·只要有一个输入信号为低电平,与非门的输出均为高电平

·该电路结构实际由G3、G4组成的输入控制电路和G1、G2组成的SR锁存器组成

目的:可以在CLK的有效电平来之前预先将触发器置成指定的状态

其中, '称为 异步置0输入端(异步复位端) , ‘称为 异步置1输入端(异步置位端) 。

只要 ‘或 ‘置低电平,就可以立即使触发器置1或置0,不受时钟信号的控制。

· 在CLK=1的全部时间里,S和R状态的变化都可能引起输出状态的变化 。在CLK回到0以后,触发器保存的是 CLK回到0以前瞬间的状态。

所以CLK=1期间,S、R的状态的多次变化会使触发器输出的状态发生 多次翻转 , 降低了触发器的抗干扰能力 。

目的:适应单端输入信号的需要,并且可以避免两个输入端相与为0的不定情况的出现

D触发器特点:在CLK有效电平期间,输出状态和输入状态相同。

在CMOS电路中,常利用CMOS传输门组成D触发器。

在CLK=0之后,由于反相器G1的电容存储效应,短时间内的G1输入端仍然保持 截止以前瞬间的状态,而且这时反相器 、 和 形成了形态 自锁 的闭合回路,所以Q和A'的状态被保存下来。

注:右上角的“一|”表示延迟

脉冲触发SR触发器也叫做 主从SR触发器 。CLK=1时, (主触发器)的输出状态由S和R端的输入状态决定, (从触发器)保持原来的状态不变;当CLK=0时,即下降沿到来的时候,主触发器保持原来的状态不变,从触发器被置成和 相同的状态。

其中,CLK列第二行的符号表示下降沿。

·在一个时钟周期里,输出端的状态只可能改变一次,而且发生在CLK的下降沿。

·CLK高电平期间,主触发器输出的状态可能随S和R状态的变化。

·仍然存在不定态,仍然要保证SR=0。

主从触发发器的理想状态:前言采样,后沿定局

显然目前这种主从触发器还未能满足这样的状态,因为它不是只是根据时钟信号的上升沿那一瞬间来采样的。

要达到这个目的,必须使CLK=1期间,主触发器的输出状态不发生变化

目的:为了使主从SR触发器在S=R=1时也有确定的状态,则将输出端Q和Q'反馈到输入端

分别对J、K、Q取不同的值的组合做讨论

·CLK变化一次,触发器的状态只可能改变一次。

·在CLK为高电平期间,主触发器只可能翻转一次。若在CLK=1期间输入端状态发生变化,需要找到CLK下降沿到来之前的Q状态来决定Q*。

· 存在一次变化问题 (即不能只根据下降沿到来时刻的状态来判断Q*) 这是这个主从JK触发器最大的缺点

也正是这种缺点,使得电路的抗干扰能力很弱,J、K的值在CLK=1期间不能发生变化。也因此违反了采用主从结构的初衷。所以在实际情况下这种触发器是不能使用的。

下图的黄色部分就存在CLK=1期间J、K的变化导致Q的状态也发生了一次翻转的问题。

目的 :提高触发器的可靠性, 增强抗干扰能力,希望触发器的 次态仅取决于 CLK信号下降沿(或上升沿) 到达时刻 输入信号的状态。而在此之前和之后输入状态的变化对触发器的次态没有影响。

把5.3.2中的主从SR触发器中的SR触发器换成D锁存器,即可构成一个边沿触发器。

在实际中,常用CMOS电路来组成边沿触发器

工作原理:

当CLK=0时, 导通, 断开,所以 =D 断开, 导通,Q保持原来的状态,反馈电路接通,自锁。

当CLK=1时, 断开, 导通,主电路保持原来的状态; 导通, 断开,Q*=D,反馈电路不通。

所以这是个上升沿触发的D触发器。

工作原理:

, ,Q=1

, ,Q=0

工作原理:

当CLK=0时,G3和G4被封锁,输出高电平,触发器保持原态,Q*=Q;G6的输出未D',G5的输出为D。

当CLK由0变成1,即脉冲的上升沿到来的时候,G3和G4门开启,把原来G5和G6门的输出传到G1和G2门处,Q=D。

当CLK=1时,G3和G4开启,但输出互为取反,即必有一个为低电平。若G3,则G3输出为低电平,则G4、G5门被封锁,D数据封锁,通过①线维持Q=1,通过③线阻止Q=0;

当G4输出为0,则G6门封锁,D数据被封锁,使得Q=0,同时②线阻止Q=1,保持Q=0

所以①线为置1线;②为置0维持线和置1阻塞线;③为置0阻塞线。

随着绿色低碳战略的不断推进,提升能源利用效率和能源转换效率已经成为各行各业的共识,如何利用现代化新技术建成可循环的高效、高可靠性的能源网络,无疑是当前各国重点关注的问题。

值此背景下,以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体成为市场聚焦的新赛道。根据Yole预测数据, 2025年全球以半绝缘型衬底制备的GaN器件市场规模将达到20亿美元,2019-2025年复合年均增长率高达12%! 其中,军工和通信基站设备是GaN器件主要的应用市场,2025年市场规模分别为11.1亿美元和7.31亿美元

全球以导电型碳化硅衬底制备的SiC器件市场规模到2025年将达到25.62亿美元,2019- 2025年复合年均增长率高达30%! 其中,新能源汽车和光伏及储能是SiC器件主要的应用市场, 2025年市场规模分别为15.53亿美元和3.14亿美元。

本文中,我们将针对第三代半导体产业多个方面的话题,与国内外该领域知名半导体厂商进行探讨解析。

20世纪50年代以来,以硅(Si)、锗(Ge)为代的第一代半导体材料的出现,取代了笨重的电子管,让以集成电路为核心的微电子工业的发展和整个IT产业的飞跃。人们最常用的CPU、GPU等产品,都离不开第一代半导体材料的功劳。可以说是由第一代半导体材料奠定了微电子产业的基础。

然而由于硅材料的带隙较窄、电子迁移率和击穿电场较低等原因,硅材料在光电子领域和高频高功率器件方面的应用受到诸多限制。因此,以砷化镓(GaAs)为代表的第二代半导体材料开始崭露头角,使半导体材料的应用进入光电子领域,尤其是在红外激光器和高亮度的红光二极管方面。与此同时,4G通信设备因为市场需求增量暴涨,也意味着第二代半导体材料为信息产业打下了坚实基础。

在第二代半导体材料的基础上,人们希望半导体元器件具备耐高压、耐高温、大功率、抗辐射、导电性能更强、工作速度更快、工作损耗更低特性,第三代半导体材料也正是基于这些特性而诞生。

笔者注意到,对于第三代半导体产业各家半导体大厂的看法也重点集中在 “高效”、“降耗”、“突破极限” 等核心关键词上。

安森美中国汽车OEM技术负责人吴桐博士 告诉笔者: “第三代半导体优异的材料特性可以突破硅基器件的应用极限,同时带来更好的性能,这也是未来功率半导体最主流的方向。” 他表示随着第三代半导体技术的普及,传统成熟的行业设计都会有突破点和优化的空间。

英飞凌科技电源与传感系统事业部大中华区应用市场总监程文涛 则从能源角度谈到,到2025年,全球可再生能源发电量有望超过燃煤发电量,将推动第三代半导体器件的用量迅速增长。 在用电端,由于数据中心、5G通信等场景用电量巨大,节电降耗的重要性凸显,也将成为率先采用第三代半导体器件做大功率转换的应用领域。

第三代半导体材料区别于前两代半导体材料最大的区别就在于带隙的不同。 第一代半导体材料属于间接带隙,窄带隙第二代半导体材料属于直接带隙,同样也是窄带隙二第三代半导体材料则是全组分直接带隙,宽禁带。

和前两代半导体材料相比,更宽的禁带宽度允许材料在更高的温度、更强的电压与更快的开关频率下运行。

随着碳化硅、氮化镓等具有宽禁带特性(Eg>2.3eV)的新兴半导体材料相继出现,世界各国陆续布局、产业化进程快速崛起。具体来看:

与硅相比, 碳化硅拥有更为优越的电气特性 : 

1.耐高压 :击穿电场强度大,是硅的10倍,用碳化硅制备器件可以极大地 提高耐压容量、工作频率和电流密度,并大大降低器件的导通损耗

2.耐高温 :半导体器件在较高的温度下,会产生载流子的本征激发现象,造成器件失效。禁带宽度越大,器件的极限工作温度越高。碳化硅的禁带接近硅的3倍,可以保证碳化硅器件在高温条件下工作的可靠性。硅器件的极限工作温度一般不能超过300℃,而碳化硅器件的极限工作温度可以达到600℃以上。同时,碳化硅的热导率比硅更高,高热导率有助于碳化硅器件的散热,在同样的输出功率下保持更低的温度,碳化硅器件也因此对散热的设计要求更低,有助于实现设备的小型化

3.高频性能 :碳化硅的饱和电子漂移速率是硅的2倍,这决定了碳化硅器件可以实现更高的工作频率和更高的功率密度。基于这些优良的特性,碳化硅衬底的使用极限性能优于硅衬底,可以满足高温、高压、高频、大功率等条件下的应用需求,已应用于射频器件及功率器件。

氮化镓则具有宽禁带、高电子漂移速度、高热导率、耐高电压、耐高温、抗腐蚀、耐辐照等突出优点。 尤其是在光电子器件领域,氮化镓器件作为LED照明光源已广泛应用,还可制备成氮化镓基激光器在微波射频器件方面,氮化镓器件可用于有源相控阵雷达、无线电通信、基站、卫星等军事 或者民用领域氮化镓也可用于功率器件,其比传统器件具有更低的电源损耗。

半导体行业有个说法: “一代材料,一代技术,一代产业” ,在第三代半导体产业规模化出现之前,也还存在着不少亟待解决的技术难题。

第三代半导体全产业链十分复杂,包括衬底→外延→设计→制造→封装。 其中,衬底是所有半导体芯片的底层材料,起到物理支撑、导热、导电等作用外延是在衬底材料上生长出新的半导体晶层,这些外延层是制造半导体芯片的重要原料,影响器件的基本性能设计包括器件设计和集成电路设计,其中器件设计包括半导体器件的结构、材料,与外延相关性很大制造需要通过光刻、薄膜沉积、刻蚀等复杂工艺流程在外延片上制作出设计好的器件结构和电路封装是指将制造好的晶圆切割成裸芯片。

前两个环节衬底和外延生长正是第三代半导体生产工艺及其难点所在。我们重点挑选碳化硅、氮化镓两种典型的第三代半导体材料来看,它们的生产制备到底还面临哪些问题。

从碳化硅来看,还需要“降低衬底生长缺陷,以及提高工艺效率” 。首先碳化硅单晶制备目前最常用的是物理气相输运法(PVT)或籽晶的升华法,而碳化硅单晶在形成最终的短圆柱状之前,还需要通过机械加工整形、切片、研磨、抛光等化学机械抛光和清洗等工艺才能成为衬底材料。

这一机械、化学制造过程存在着加工困难、制造效率低、制造成本高等问题。此外,如果再加上考虑单晶加工的效率和成本问题,那还能够保障晶片具备良好的几何形貌,如总厚度变化、翘曲度、变形,而且晶片表面质量(粗糙度、划伤等)是否过关等,这都是碳化硅衬底制备中的巨大挑战。

此外,碳化硅材料是目前仅次于金刚石硬度的材料,材料的机械加工主要以金刚石磨料为基础切割线、切割刀具、磨削砂轮等工具。这些工具的制备难度大,使用寿命短,加工成本高,为了延长工具寿命、提高加工质量,往往会采用微量或极低速进给量,这就牺牲了碳化硅材料制备的整体生产效率。

对于氮化镓来说,则更看重“衬底与外延材料需匹配”的难题 。由于氮化镓在高温生长时“氮”的离解压很高,很难得到大尺寸的氮化镓单晶材料,当前大多数商业器件是基于异质外延的,比如蓝宝石、AlN、SiC和Si材料衬底来替代氮化镓器件的衬底。

但问题是这些异质衬底材料和氮化镓之间的晶格失配和热失配非常大,晶格常数差异会导致氮化镓衬底和外延层界面处的高密度位错缺陷,严重的话还会导致位错穿透影响外延层的晶体质量。这也就是为什么氮化镓更看重衬底与外延材料需匹配的难点。

在落地到利用第三代半导体材料去解决具体问题时,程文涛告诉OFweek维科网·电子工程, 英飞凌的碳化硅器件所采用的沟槽式结构解决了大多数功率开关器件的可靠性问题。

比如现在大多数功率开关器件产品采用的是平面结构,难以在开关的效率上和长期可靠性上得到平衡。采用平面结构,如果要让器件的效率提高,给它加点电,就能导通得非常彻底,那么它的门级就需要做得非常薄,这个很薄的门级结构,在长期运行的时候,或者在大批量运用的时候,就容易产生可靠性的问题。

如果要把它的门级做的相对比较厚,就没办法充分利用沟道的导通性能。而采用沟槽式的做法就能够很好地解决这两个问题。

吴桐博士则从产业化的角度提出, 第三代半导体技术的难点在于有关设计技术和量产能力的协调,以及对长期可靠性的保障。尤其是量产的良率,更需要持续性的优化,降低成本,提升可靠性。

观察当前半导体市场可以发现,占据市场九成以上的份额的主流产品依然是硅基芯片。

但近些年来,“摩尔定律面临失效危机”的声音不绝于耳,随着芯片设计越来越先进,芯片制造工艺不断接近物理极限和工程极限,芯片性能提升也逐步放缓,且成本不断上升。

业界也因此不断发出质疑,未来芯片的发展极限到底在哪,一旦硅基芯片达到极限点,又该从哪个方向下手寻求芯片效能的提升呢?笔者通过采访发现,国内外厂商在面对这一问题时,虽然都表达出第三代半导体产业未来值得期待,但也齐齐提到在这背后还需要重点解决的成本问题。

“目前硅基半导体从架构上、从可靠性、从性能的提升等方面,基本上已经接近了物理极限。第三代半导体将接棒硅基半导体,持续降低导通损耗,在能源转换的领域作出贡献,” 程文涛也为笔者描述了当前市场上的一种现象:可能会存在一些定价接近硅基半导体的第三代半导体器件,但并不代表它的成本就接近硅基半导体。因为那是一种商业行为,就是通过低定价来催生这个市场。

以目前的工艺来讲,第三代半导体的成本还是远高于硅基半导体 ,程文涛表示:“至少在可见的将来,第三代半导体不会完全取代第一代半导体。因为从性价比的角度来说,在非常宽的应用范围中,硅基半导体目前依然是不二之选。第三代半导体目前在商业化上的瓶颈就是成本很高,虽然在迅速下降,但依然远高于硅基半导体。”

作为中国碳化硅功率器件产业化的倡导者之一,泰科天润同样也表示对第三代半导体产业发展的看好。

虽然碳化硅单价目前比硅高不少,但从系统整体的角度来看,可以节约电感电容以及散热片。如果是大功率电源系统整体角度看成本未必更高,同时还能更好地提升效率。 这也是为什么现阶段虽然单器件碳化硅比硅贵,依然不少领域客户已经批量使用了。

从器件的角度来看,碳化硅从四寸过度到六寸,未来往八寸甚至十二寸发展,碳化硅器件的成本也将大幅度下降。据泰科天润介绍,公司新的碳化硅六寸线于去年就已经实现批量出货,为客户提供更高性价比的产品,有些产品实现20-30%的降价幅度。除此之外,泰科天润耗时1年多成功开发了碳化硅减薄工艺,在Vf水平不变的情况下,可以缩小芯片面积,进一步为客户提供性价比更高的产品。

泰科天润还告诉笔者:“这两年随着国外友商的缺货或涨价,比如一些高压硅器件,这些领域已经出现碳化硅取代硅的现象。随着碳化硅晶圆6寸产线生产技术的成熟,8寸晶圆的发展,碳化硅器件有望与硅基器件达到相同的价格水平。”

吴桐博士认为, 目前来看在不同的细分市场,第三代半导体跟硅基器件是一个很好的互补,也是价钱vs性能的一个平衡。随着第三代半导体的成熟以及成本的降低,最终会慢慢取代硅基产品成为主流方案。

那么对于企业而言,该如何发挥第三代半导体的综合优势呢?吴桐博士表示,于安森美而言,首先是要垂直整合,保证稳定的供应链,可长期规划的产能布局以及达到客观的投资回报率其次是在技术研发上继续发力,比如Rsp等参数,相比行业水准,实现用更小的半导体面积实现相同功能,这样单个器件成本得以优化第三是持续地提升FE/BE良率,等效的降低成本第四是与行业大客户共同开发定义新产品,保证竞争力以及稳定的供需关系最后也是重要的一点,要帮助行业共同成长,蛋糕做大,产能做强,才能使得单价有进一步下降的空间。

第三代半导体产业究竟掀起了多大的风口?根据《2020“新基建”风口下第三代半导体应用发展与投资价值白皮书》内容:2019年我国第三代半导体市场规模为94.15亿元,预计2019-2022年将保持85%以上平均增长速度,到2022年市场规模将达到623.42亿元。

其中,第三代半导体衬底市场规模从7.86亿元增长至15.21亿元,年复合增速为24.61%,半导体器件市场规模从86.29亿元增长至608.21亿元,年复合增速为91.73%。

得益于第三代半导体材料的优良特性,它在 光电子、电力电子、通讯射频 等领域尤为适用。具体来看:

光电子器件 包括发光二极管、激光器、探测器、光子集成电路等,多用于5G通信领域,场景包括半导体照明、智能照明、光纤通信、光无线通信、激光显示、高密度存储、光复印打印、紫外预警等

电力电子器件 包括碳化硅器件、氮化镓器件,多用于新能源领域,场景包括消费电子、新能源汽车、工业、UPS、光伏逆变器等

微波射频器件 包括HEMT(高电子迁移率晶体管)、MMIC(单片微波集成电路)等,同样也是用在5G通信领域,不过场景则更加高端,包括通讯基站及终端、卫星通讯、军用雷达等。

现阶段,欧美日韩等国第三代半导体企业已形成规模化优势,占据全球市场绝大多数市场份额。我国高度重视第三代半导体发展,在研发、产业化方面出台了一系列支持政策。国家科技部、工信部等先后开展了“战略性第三代半导体材料项目部署”等十余个专项,大力支持第三代半导体技术和产业发展。

早在2014年,工信部发布的《国家集成电路产业发展推进纲要》提出设立国家产业投资基金,重点支持集成电路等产业发展,促进工业转型升级,同时鼓励社会各类风险投资和股权投资基金进入集成电路领域在去年全国人大发布《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中,进一步强调培育先进制造业集群,推动集成电路、航空航天等产业创新发展。瞄准人工智能、量子信息、集成电路等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。

具体来看当前主要应用领域的发展情况:

1.新能源汽车

新能源汽车行业是未来市场空间巨大的新兴市场,全球范围内新能源车的普及趋势明朗。随着电动汽车的发展,对功率半导体器件需求量日益增加,成为功率半导体器件新的经济增长点。得益于碳化硅功率器件的高可靠性及高效率特性,在车载级的电机驱动器、OBC及DC/DC部分,碳化硅器件的使用已经比较普遍。对于非车载充电桩产品, 由于成本的原因,目前使用比例还相对较低,但部分厂商已开始利用碳化硅器件的优势,通过降低冷却等系统的整体成本找到了市场。

2.光伏

光伏逆变器曾普遍采用硅器件,经过40多年的发展,转换效率和功率密度等已接近理论极限。碳化硅器件具有低损耗、高开关频率、高适用性、降低系统散热要求等优点,将在光伏新能源领域得到广泛应用。例如,在住宅和商业设施光伏系统中的组串逆变器里,碳化硅器件在系统级层面带来成本和效能的好处。

3.轨道交通

未来轨道交通对电力电子装置,比如牵引变流器、电力电子电压器等提出了更高的要求。采用碳化硅功率器件可以大幅度提高这些装置的功率密度和工作效率,有助于明显减轻轨道交通的载重系统。目前,受限于碳化硅功率器件的电流容量,碳化硅混合模块将首先开始替代部分硅IGBT模块。未来随着碳化硅器件容量的提升,全碳化硅模块将在轨道交通领域发挥更大的作用。

4.智能电网

目前碳化硅器件已经在中低压配电网开始了应用。未来更高电压、更大容量、更低损耗的柔性输变电将对万伏级以上的碳化硅功率器件具有重大需求。碳化硅功率器件在智能电网的主要应用包括高压直流输电换流阀、柔性直流输电换流阀、灵活交流输电装置、高压直流断路器、电力电子变压器等装置中。

第三代半导体自从在2021年被列入十四五规划后,相关概念持续升温,迅速成为超级风口,投资热度高居不下。

时常会听到业内说法称,第三代半导体国内外都是同一起跑线出发,目前大家差距相对不大,整个产业发展仍处于爆发前的“抢跑”阶段,对国内而言第三代半导体材料更是有望成为半导体产业的“突围先锋”,但事实真的是这样吗?

从起步时间来看,欧日美厂商率先积累专利布局,比如 英飞凌一直走在碳化硅技术的最前沿,从30年前(1992年)开始包含碳化硅二极管在内的功率半导体的研发,在2001年发布了世界上第一款商业化碳化硅功率二极管 ,此后至今英飞凌不断推出了各种性能优异的碳化硅功率器件。除了产品本身,英飞凌在2018年收购了Siltectra,致力于通过冷切割技术优化工艺流程,大幅提高对碳化硅原材料的利用率,有效降低碳化硅的成本。

安森美也是第三代半导体产业布局中的佼佼者,据笔者了解, 安森美通过收购上游碳化硅供应企业GTAT实现了产业链的垂直整合,确保产能和质量的稳定。同时借助安森美多年的技术积累以及几年前收购Fairchild半导体基因带来的技术补充,安森美的碳化硅技术已经进入第三代,综合性能在业界处于领先地位 。目前已成为世界上少数提供从衬底到模块的端到端碳化硅方案供应商,包括碳化硅球生长、衬底、外延、器件制造、同类最佳的集成模块和分立封装方案。

具体到技术上, 北京大学教授、宽禁带半导体研究中心主任沈波 也曾提出,国内第三代半导体和国际上差距比较大,其中很重要的领域之一是碳化硅功率电子芯片。这一块国际上已经完成了多次迭代,虽然8英寸技术还没投入量产,但是6英寸已经是主流技术,二极管已经发展到了第五代,三极管也发展到了第三代,IGBT也已进入产业导入前期。

另外车规级的碳化硅MOSFET模块在意法半导体率先通过以后,包括罗姆、英飞凌、科锐等国际巨头也已通过认证,国际上车规级的碳化硅芯片正逐渐走向规模化生产和应用。反观国内,目前真正量产的主要还是碳化硅二极管,工业级MOSFET模块估计到明年才能实现规模量产,车规级碳化硅模块要等待更长时间才能量产。

泰科天润也直言,国内该领域仍处于后发追赶阶段:器件方面,从二极管的角度, 国产碳化硅二极管基本上水平和国外差距不大,但是碳化硅MOSFET国内外差距还是有至少1-2代的差距 可靠性方面,国外碳化硅产品市场应用推广较早,积累了更加丰富的应用经验,对产品可靠性的认知,定义以及关联解决可靠性的方式都走得更前一些,国内厂家也在推广市场的过程中逐步积累相关经验产业链方面,国外厂家针对碳化硅的材料优势,相关匹配的产业链都做了对应的优化设计,使之能更加契合的体现碳化硅的材料优势。

OFweek维科网·电子工获悉,泰科天润在湖南新建的碳化硅6寸晶圆产线,第一期60000片/六寸片/年。此产线已经于去年实现批量出货,2022年始至4月底已经接到上亿元销售订单。 作为国内最早从事碳化硅芯片生产研发的公司,泰科天润积累了10余年的生产经验,针对特定领域可以结合自身的研发,生产和工艺一体化,快速为客户开发痛点新品 ,例如公司全球首创的史上最小650V1A SOD123,专门针对解决自举驱动电路已经替换高压小电流Si FRD解决反向恢复的痛点问题而设计。

虽然说IDM方面,我国在碳化硅器件设计方面有所欠缺,少有厂商涉及于此,但后发追赶者也不在少数。

就拿碳化硅产业来看,单晶衬底方面国内已经开发出了6英寸导电性碳化硅衬底和高纯半绝缘碳化硅衬底。 山东天岳、天科合达、河北同光、中科节能 均已完成6英寸衬底的研发,中电科装备研制出6英寸半绝缘衬底。

此外,在模块、器件制造环节我国也涌现了大批优秀的企业,包括 三安集成、海威华芯、泰科天润、中车时代、世纪金光、芯光润泽、深圳基本、国扬电子、士兰微、扬杰科技、瞻芯电子、天津中环、江苏华功、大连芯冠、聚力成半导体 等等。

OFweek维科网·电子工程认为,随着我国对新型基础建设的布局展开和“双碳”目标的提出,碳化硅和氮化稼等第三代半导体的作用也愈发凸显。

上有国家支持政策,下有新能源汽车、5G通信等旺盛市场需求, 我国第三代半导体产业也开始由“导入期”向“成长期”过渡,初步形成从材料、器件到应用的全产业链。但美中不足在于整体技术水平还落后世界顶尖水平好几年,因此在材料、晶圆、封装及应用等环节的核心关键技术和可靠性、一致性等工程化应用问题上还需进一步完善优化。

当前,全球正处于新一轮科技和产业革命的关键期,第三代半导体产业作为新一代电子信息技术中的重点组成部分,为能源革命带来了深刻的改变。

在此背景下,OFweek维科网·电子工程作为深耕电子产业领域的资深媒体,对全球电子产业高度关注,紧跟产业发展步伐。为了更好地促进电子工程师之间技术交流,推动国内电子行业技术升级,我们继续联袂数十家电子行业企业技术专家,推出面向电子工程师技术人员的专场在线会议  「OFweek 2022 (第二期)工程师系列在线大会」  。

本期在线会议将于6月22日在OFweek官方直播平台举办,将邀请国内外知名电子企业技术专家,聚焦半导体领域展开技术交流,为各位观众带来技术讲解、案例分享和方案展示。

本文研究全球市场、主要地区和主要国家半导体玻璃晶圆基板的销量、销售收入等,同时也重点分析全球范围内主要厂商(品牌)竞争态势,半导体玻璃晶圆基板销量、价格、收入和市场份额等。

针对过去五年(2017-2021)年的历史情况,分析历史几年全球半导体玻璃晶圆基板总体规模,主要地区规模,主要企业规模和份额,主要产品分类规模,下游主要应用规模等。规模分析包括销量、价格、收入和市场份额等。针对未来几年半导体玻璃晶圆基板的发展前景预测,本文预测到2028年,主要包括全球和主要地区销量、收入的预测,分类销量和收入的预测,以及主要应用半导体玻璃晶圆基板的销量和收入预测等。

据GIR (Global Info Research)调研,按收入计,2021年全球半导体玻璃晶圆基板收入大约 百万美元,预计2028年达到 百万美元,2022至2028期间,年复合增长率CAGR为 %。同时2021年全球半导体玻璃晶圆基板销量大约 ,预计2028年将达到 。2021年中国市场规模大约为 百万美元,在全球市场占比约为 %,同期北美和欧洲市场分别占比为 %和 %。未来几年,中国CAGR为 %,同期美国和欧洲CAGR分别为 %和 %,亚太地区将扮演更重要角色,除中美欧之外,日本、韩国、印度和东南亚地区,依然是不可忽视的重要市场。

全球市场主要半导体玻璃晶圆基板生产商包括Shin-Etsu Chemical Co.,Ltd.、Siltronic AG、Bullen Ultrasonics、Corning Inc和Semiconductor Wafer Inc等,按收入计,2021年全球前四大厂商占有大约 %的市场份额。

从产品类型方面来看,光学基板占有重要地位,按收入计,2021年市场份额为 %,预计2028年份额将达到 %。同时就应用来看,电子产品在2028年份额大约是 %,未来几年CAGR大约为 %。

根据不同产品类型,半导体玻璃晶圆基板细分为:

光学基板

微机电系统

电子封装

微光刻

其他

根据不同应用,本文重点关注以下领域:

电子产品

半导体

生物技术

太阳能

水电

本文重点关注全球范围内半导体玻璃晶圆基板主要企业,包括:

Shin-Etsu Chemical Co.,Ltd.

Siltronic AG

Bullen Ultrasonics

Corning Inc

Semiconductor Wafer Inc

PlanOptik AG

Schott AG

AGC Inc

Precision Glass and Optics

Swift Glass

Sydor Optics

Specialty Glass Products

本文重点关注全球主要地区和国家,重点包括:

北美市场(美国、加拿大和墨西哥)

欧洲市场(德国、法国、英国、俄罗斯、意大利和欧洲其他国家)

亚太市场(中国、日本、韩国、印度、东南亚和澳大利亚等)

南美市场(巴西和阿根廷等)

中东及非洲(沙特、阿联酋和土耳其等)

章节内容简要介绍:

第1章、定义、统计范围、产品分类、应用等介绍,全球总体规模及展望

第2章、企业简介,包括企业基本情况、主营业务及主要产品、半导体玻璃晶圆基板销量、收入、价格、企业最新动态等

第3章、全球竞争态势分析,主要企业半导体玻璃晶圆基板销量、价格、收入及份额

第4章、主要地区规模及预测

第5章、按产品类型拆分,细分规模及预测

第6章、按应用拆分,细分规模及预测

第7章、北美地区细分,按国家、产品类型和应用拆分,细分规模及预测

第8章、欧洲地区细分,按国家、产品类型和应用拆分,细分规模及预测

第9章、亚太地区细分,按地区、产品类型和应用拆分,细分规模及预测

第10章、南美地区细分,按地区、产品类型和应用拆分,细分规模及预测

第11章、中东及非洲细分,按地区、产品类型和应用拆分,细分规模及预测

第12章、市场动态,包括驱动因素、阻碍因素、发展趋势

第13章、行业产业链分析

第14章、销售渠道分析

第15章、报告结论

正文目录

1 统计范围

1.1 半导体玻璃晶圆基板介绍

1.2 半导体玻璃晶圆基板分类

1.2.1 全球市场不同产品类型半导体玻璃晶圆基板规模对比:2017 VS 2021 VS 2028

1.2.2 光学基板

1.2.3 微机电系统

1.2.4 电子封装

1.2.5 微光刻

1.2.6 其他

1.3 全球半导体玻璃晶圆基板主要下游市场分析

1.3.1 全球半导体玻璃晶圆基板主要下游市场规模对比:2017 VS 2021 VS 2028

1.3.2 电子产品

1.3.3 半导体

1.3.4 生物技术

1.3.5 太阳能

1.3.6 水电

1.4 全球市场半导体玻璃晶圆基板总体规模及预测

1.4.1 全球市场半导体玻璃晶圆基板市场规模及预测:2017 VS 2021 VS 2028

1.4.2 全球市场半导体玻璃晶圆基板销量(2017-2028)

1.4.3 全球市场半导体玻璃晶圆基板价格趋势

1.5 全球市场半导体玻璃晶圆基板产能分析

1.5.1 全球市场半导体玻璃晶圆基板总产能(2017-2028)

1.5.2 全球市场主要地区半导体玻璃晶圆基板产能分析

2 企业简介

2.1 Shin-Etsu Chemical Co.,Ltd.

2.1.1 Shin-Etsu Chemical Co.,Ltd.基本情况

2.1.2 Shin-Etsu Chemical Co.,Ltd.主营业务及主要产品

2.1.3 Shin-Etsu Chemical Co.,Ltd. 半导体玻璃晶圆基板产品介绍

2.1.4 Shin-Etsu Chemical Co.,Ltd. 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.1.5 Shin-Etsu Chemical Co.,Ltd.最新发展动态

2.2 Siltronic AG

2.2.1 Siltronic AG基本情况

2.2.2 Siltronic AG主营业务及主要产品

2.2.3 Siltronic AG 半导体玻璃晶圆基板产品介绍

2.2.4 Siltronic AG 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.2.5 Siltronic AG最新发展动态

2.3 Bullen Ultrasonics

2.3.1 Bullen Ultrasonics基本情况

2.3.2 Bullen Ultrasonics主营业务及主要产品

2.3.3 Bullen Ultrasonics 半导体玻璃晶圆基板产品介绍

2.3.4 Bullen Ultrasonics 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.3.5 Bullen Ultrasonics最新发展动态

2.4 Corning Inc

2.4.1 Corning Inc基本情况

2.4.2 Corning Inc主营业务及主要产品

2.4.3 Corning Inc 半导体玻璃晶圆基板产品介绍

2.4.4 Corning Inc 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.4.5 Corning Inc最新发展动态

2.5 Semiconductor Wafer Inc

2.5.1 Semiconductor Wafer Inc基本情况

2.5.2 Semiconductor Wafer Inc主营业务及主要产品

2.5.3 Semiconductor Wafer Inc 半导体玻璃晶圆基板产品介绍

2.5.4 Semiconductor Wafer Inc 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.5.5 Semiconductor Wafer Inc最新发展动态

2.6 PlanOptik AG

2.6.1 PlanOptik AG基本情况

2.6.2 PlanOptik AG主营业务及主要产品

2.6.3 PlanOptik AG 半导体玻璃晶圆基板产品介绍

2.6.4 PlanOptik AG 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.6.5 PlanOptik AG最新发展动态

2.7 Schott AG

2.7.1 Schott AG基本情况

2.7.2 Schott AG主营业务及主要产品

2.7.3 Schott AG 半导体玻璃晶圆基板产品介绍

2.7.4 Schott AG 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.7.5 Schott AG最新发展动态

2.8 AGC Inc

2.8.1 AGC Inc基本情况

2.8.2 AGC Inc主营业务及主要产品

2.8.3 AGC Inc 半导体玻璃晶圆基板产品介绍

2.8.4 AGC Inc 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.8.5 AGC Inc最新发展动态

2.9 Precision Glass and Optics

2.9.1 Precision Glass and Optics基本情况

2.9.2 Precision Glass and Optics主营业务及主要产品

2.9.3 Precision Glass and Optics 半导体玻璃晶圆基板产品介绍

2.9.4 Precision Glass and Optics 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.9.5 Precision Glass and Optics最新发展动态

2.10 Swift Glass

2.10.1 Swift Glass基本情况

2.10.2 Swift Glass主营业务及主要产品

2.10.3 Swift Glass 半导体玻璃晶圆基板产品介绍

2.10.4 Swift Glass 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.10.5 Swift Glass最新发展动态

2.11 Sydor Optics

2.11.1 Sydor Optics基本情况

2.11.2 Sydor Optics主营业务及主要产品

2.11.3 Sydor Optics 半导体玻璃晶圆基板产品介绍

2.11.4 Sydor Optics 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.11.5 Sydor Optics最新发展动态

2.12 Specialty Glass Products

2.12.1 Specialty Glass Products基本情况

2.12.2 Specialty Glass Products主营业务及主要产品

2.12.3 Specialty Glass Products 半导体玻璃晶圆基板产品介绍

2.12.4 Specialty Glass Products 半导体玻璃晶圆基板销量、价格、收入、毛利率及市场份额(2017-2022)

2.12.5 Specialty Glass Products最新发展动态

3 全球市场半导体玻璃晶圆基板主要厂商竞争态势

3.1 全球市场主要厂商半导体玻璃晶圆基板销量(2017-2022)

3.2 全球市场主要厂商半导体玻璃晶圆基板收入(2017-2022)

3.3 全球半导体玻璃晶圆基板主要厂商市场地位

3.4 全球半导体玻璃晶圆基板市场集中度分析

3.5 全球半导体玻璃晶圆基板主要厂商产品布局及区域分布

3.5.1 全球半导体玻璃晶圆基板主要厂商区域分布

3.5.2 全球主要厂商半导体玻璃晶圆基板产品类型

3.5.3 全球主要厂商半导体玻璃晶圆基板相关业务/产品布局情况

3.5.4 全球主要厂商半导体玻璃晶圆基板产品面向的下游市场及应用

3.6 半导体玻璃晶圆基板新进入者及扩产计划

3.7 半导体玻璃晶圆基板行业扩产、并购情况

4 全球主要地区规模分析

4.1 全球主要地区半导体玻璃晶圆基板市场规模

4.1.1 全球主要地区半导体玻璃晶圆基板销量(2017-2028)

4.1.2 全球主要地区半导体玻璃晶圆基板收入(2017-2028)

4.2 北美市场半导体玻璃晶圆基板 收入(2017-2028)

4.3 欧洲市场半导体玻璃晶圆基板收入(2017-2028)

4.4 亚太市场半导体玻璃晶圆基板收入(2017-2028)

4.5 南美市场半导体玻璃晶圆基板收入(2017-2028)

4.6 中东及非洲市场半导体玻璃晶圆基板收入(2017-2028)

5 全球市场不同产品类型半导体玻璃晶圆基板市场规模

5.1 全球不同产品类型半导体玻璃晶圆基板销量(2017-2028)

5.2 全球不同产品类型半导体玻璃晶圆基板收入(2017-2028)

5.3 全球不同产品类型半导体玻璃晶圆基板价格(2017-2028)

6 全球市场不同应用半导体玻璃晶圆基板市场规模

6.1 全球不同应用半导体玻璃晶圆基板销量(2017-2028)

6.2 全球不同应用半导体玻璃晶圆基板收入(2017-2028)

6.3 全球不同应用半导体玻璃晶圆基板价格(2017-2028)

7 北美

7.1 北美不同产品类型半导体玻璃晶圆基板销量(2017-2028)

7.2 北美不同应用半导体玻璃晶圆基板销量(2017-2028)

7.3 北美主要国家半导体玻璃晶圆基板市场规模

7.3.1 北美主要国家半导体玻璃晶圆基板销量(2017-2028)

7.3.2 北美主要国家半导体玻璃晶圆基板收入(2017-2028)

7.3.3 美国半导体玻璃晶圆基板市场规模及预测(2017-2028)

7.3.4 加拿大半导体玻璃晶圆基板市场规模及预测(2017-2028)

7.3.5 墨西哥半导体玻璃晶圆基板市场规模及预测(2017-2028)

8 欧洲

8.1 欧洲不同产品类型半导体玻璃晶圆基板销量(2017-2028)

8.2 欧洲不同应用半导体玻璃晶圆基板销量(2017-2028)

8.3 欧洲主要国家半导体玻璃晶圆基板市场规模

8.3.1 欧洲主要国家半导体玻璃晶圆基板销量(2017-2028)

8.3.2 欧洲主要国家半导体玻璃晶圆基板收入(2017-2028)

8.3.3 德国半导体玻璃晶圆基板市场规模及预测(2017-2028)

8.3.4 法国半导体玻璃晶圆基板市场规模及预测(2017-2028)

8.3.5 英国半导体玻璃晶圆基板市场规模及预测(2017-2028)

8.3.6 俄罗斯半导体玻璃晶圆基板市场规模及预测(2017-2028)

8.3.7 意大利半导体玻璃晶圆基板市场规模及预测(2017-2028)

9 亚太

9.1 亚太不同产品类型半导体玻璃晶圆基板销量(2017-2028)

9.2 亚太不同应用半导体玻璃晶圆基板销量(2017-2028)

9.3 亚太主要地区半导体玻璃晶圆基板市场规模

9.3.1 亚太主要地区半导体玻璃晶圆基板销量(2017-2028)

9.3.2 亚太主要地区半导体玻璃晶圆基板收入(2017-2028)

9.3.3 中国半导体玻璃晶圆基板市场规模及预测(2017-2028)

9.3.4 日本半导体玻璃晶圆基板市场规模及预测(2017-2028)

9.3.5 韩国半导体玻璃晶圆基板市场规模及预测(2017-2028)

9.3.6 印度半导体玻璃晶圆基板市场规模及预测(2017-2028)

9.3.7 东南亚半导体玻璃晶圆基板市场规模及预测(2017-2028)

9.3.8 澳大利亚半导体玻璃晶圆基板市场规模及预测(2017-2028)

10 南美

10.1 南美不同产品类型半导体玻璃晶圆基板销量(2017-2028)

10.2 南美不同应用半导体玻璃晶圆基板销量(2017-2028)

10.3 南美主要国家半导体玻璃晶圆基板市场规模

10.3.1 南美主要国家半导体玻璃晶圆基板销量(2017-2028)

10.3.2 南美主要国家半导体玻璃晶圆基板收入(2017-2028)

10.3.3 巴西半导体玻璃晶圆基板市场规模及预测(2017-2028)

10.3.4 阿根廷半导体玻璃晶圆基板市场规模及预测(2017-2028)

11 中东及非洲

11.1 中东及非洲不同产品类型半导体玻璃晶圆基板销量(2017-2028)

11.2 中东及非洲不同应用半导体玻璃晶圆基板销量(2017-2028)

11.3 中东及非洲主要国家半导体玻璃晶圆基板市场规模

11.3.1 中东及非洲主要国家半导体玻璃晶圆基板销量(2017-2028)

11.3.2 中东及非洲主要国家半导体玻璃晶圆基板收入(2017-2028)

11.3.3 土耳其半导体玻璃晶圆基板市场规模及预测(2017-2028)

11.3.4 沙特半导体玻璃晶圆基板市场规模及预测(2017-2028)

11.3.5 阿联酋半导体玻璃晶圆基板市场规模及预测(2017-2028)

12 市场动态

12.1 半导体玻璃晶圆基板市场驱动因素

12.2 半导体玻璃晶圆基板市场阻碍因素

12.3 半导体玻璃晶圆基板市场发展趋势

12.4 半导体玻璃晶圆基板行业波特五力模型分析

12.4.1 行业内竞争者现在的竞争能力

12.4.2 潜在竞争者进入的能力

12.4.3 供应商的议价能力

12.4.4 购买者的议价能力

12.4.5 替代品的替代能力

12.5 新冠疫情COVID-19及俄乌战争影响分析

12.5.1 新冠疫情COVID-1影响分析

12.5.2 俄乌战争影响分析

13 产业链分析

13.1 半导体玻璃晶圆基板主要原料及供应商

13.2 半导体玻璃晶圆基板成本结构及占比

13.3 半导体玻璃晶圆基板生产流程

13.4 半导体玻璃晶圆基板产业链

14 半导体玻璃晶圆基板销售渠道分析

14.1 半导体玻璃晶圆基板销售渠道

14.1.1 直销

14.1.2 经销

14.2 半导体玻璃晶圆基板典型经销商

14.3 半导体玻璃晶圆基板典型客户

15 研究结论

16 附录

16.1 研究方法

16.2 研究过程及数据来源

16.3 免责声明

天降惊喜二选一

阅读惊喜奖励

领金币

领吃饭补贴

去领取

搜索

全球半导体分析

中国十大玻璃厂排名

晶圆和芯片的关系

中美半导体发展前景

玻璃基板市场分析

6寸晶圆和8寸的区别


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/6230159.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-18
下一篇 2023-03-18

发表评论

登录后才能评论

评论列表(0条)

保存