爱因斯坦发明了:
1、数码相机:从镜头飞进来的光子会把半导体里的电子挤走,这同样利用了宝贵的爱因斯坦光电效应。
2、平坦的公路:在爱因斯坦的博士论文中探讨了在不同溶液中测量分子的新方法,这些方法后来成为胶体化学的基本方法。建材工程师在建造公路时,就是利用他的研究成果。
3、电脑显示器:发明电脑显示器的工程师必须使显示器符合“相对论效应”,否则控制电子飞驰的磁铁就会在显示屏上产生模糊图像。
4、精准的激光:每一件商品条形码也得益于爱因斯坦的激光理论,只有激光才能准确读出条形码中的编码。
5、太阳能电池:这些光电池能够把太阳能转成电能,爱因斯坦在90年前发表的一篇论文里就首次正确地分析过这一转换原理。他发现光子具有能量。某些光子携带的能量足以克服将电子集中于某种金属的“粘性”,这就是著名的光电效应。
扩展资料:
能量守恒:E=mc²,物质不灭定律,说的是物质的质量不灭;能量守恒定律,说的是物质的能量守恒。
虽然这两条伟大的定律相继被人们发现了,但是人们以为这是两个风马牛不相关的定律,各自说明了不同的自然规律。甚至有人以为,物质不灭定律是一条化学定律,能量守恒定律是一条物理定律,它们分属于不同的科学范畴。
爱因斯坦认为,物质的质量是惯性的量度,能量是运动的量度;能量与质量并不是彼此孤立的,而是互相联系的,不可分割的。物体质量的改变,会使能量发生相应的改变;而物体能量的改变,也会使质量发生相应的改变。
在狭义相对论中,爱因斯坦提出了著名的质能公式:E=mc^2(这里的E代表能量,m代表多少质量,c代表光的速度,近似值为3×10^8m/s,这说明能量可以用减少质量的方法创造)。
狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性。因为微观粒子的运动速度一般都比较快,有的接近甚至达到光速,所以粒子的物理学离不开相对论。
质能关系式不仅为量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用提供了根据。
相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。
爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名的质能关系式:E=mc^2,质能关系式对后来发展的原子能事业起到了指导作用。
参考资料来源:百度百科——阿尔伯特·爱因斯坦
爱因斯坦最伟大的发现为光电效应和相对论学说,爱因斯坦一生为物理学贡献了许多努力,量子理论、宇宙常数、光电子理论、光电效应、相对论学说等等,都是爱因斯坦伟大的发现。
但是光电效应和相对论学说这两种是爱因斯坦对科学最好的献礼,促进了人类科学的进步,奠定了爱因斯坦在科学发展的地位。
得益于爱因斯坦理论的重大发明。
1.太阳能电池、防盗报警器和照相机的测光表都是以光电效应为基础的。
2.核能利用了这样一个物理现象:当铀原子发生裂变时,总质量的微量损失可以转变成能量,其依据正是爱因斯坦的著名等式E=Mc2。如今,核能为英国提供了25%的电力。
3.全球定位系统之所以能将物体的位置精确到米,正是根据爱因斯坦的相对论对地球卫星发出的信号进行了修正。
4.狭义相对论与量子理论相结合,指出了反物质的存在。科学家们利用正电子,即反物质“电子”,通过X射线层析照相术研究大脑活动。
5.亚原子粒子的特性是相对论的直接结果,其存在可以解释从化学元素的特性到磁铁作用的多种现象。
6.爱因斯坦1916至1917年对光子的研究为人类40年后发现激光奠定了基础。目前激光广泛应用于从DVD到激光打印机的多种产品。
爱因斯坦 E=mc2,是一个简洁且意义重大的基础物理学公式,甚至彻底颠覆了人们的认知。它使人们意识到,质量和能量是同一事物的不同表现形式。以这种方式思考问题,使我们能够发现构成宇宙的基本粒子,利用核能,发明核武器,并发现描述宇宙中每个物体如何相互作用的重力理论。
爱因斯坦在相对论中提出了一个著名的质能方程 E = mc2,其中E表示物质所含的所有能量,m 是物质的质量,c 是光速。这个质能方程是现代制造核武器、核电站的理论基础。”
扩展资料
在宇宙中发生的任何反应中,质量始终是守恒的。无论发生反应的反应物是什么,反应的过程是如何进行的,最后有什么产物产出,发生反应的反应物的质量总和总是和反应后所有产物的质量总和相等。
但是在狭义相对论中,质量根本不可能是一个守恒量,因为不同参考系的人会认为两个参考系的能量是不同的。相反,爱因斯坦从中推出了我们今天仍在使用的一个规律,这个规律由简单却又很强大的公式所记录,那就是:E=mc2。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)