1、硅导电,硅的电导率与其温度有很大关系,随着温度升高,电导率增大,在1480℃左右达到最大,而温度超过1600℃后又随温度的升高而减小。
2、半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。
半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
扩展资料:
硅的物理性质:
有无定形硅和晶体硅两种同素异形体。晶体硅为灰黑色,无定形硅为黑色,密度2.32-2.34克/立方厘米,熔点1410℃,沸点2355℃,晶体硅属于原子晶体。不溶于水、硝酸和盐酸,溶于氢氟酸和碱液。硬而有金属光泽。
半导体:最早的实用“半导体”是「电晶体(Transistor)/二极体(Diode)」。
1、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。
2、发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。
3、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。
4、半导体致冷器的发展, 它也叫热电致冷器或温差致冷器, 它采用了帕尔贴效应。
参考资料来源:百度百科——半导体
参考资料来源:百度百科——硅
在半导体和绝缘体, 电子 被限制对一定数量 带 能量和禁止其他地区。 期限“带隙”提到上面的能量区别之间 化学价带 并且底部 传导带电子能从一条带跳跃到另一个。传导性 纯半导体 依靠强烈带隙。 唯一的可利用的载体为传导是有横跨带隙将被激发的足够的热能的电子。带隙工程学是控制或修改材料的带隙的过程通过控制某一半导体的构成 合金例如GaAlAs、InGaAs和InAlAs。 靠技术修建层状材料与交替的构成象也是可能的 分子束外延. 这些方法在设计被利用 异质结双极晶体管 (HBTs), laser二极管 并且 太阳能电池.半导体和绝缘体之间的分别是大会事情。 一种方法将认为半导体作为绝缘体的类型以低带隙。 绝缘体以更高的带隙,通常大于3 eV,没有被认为半导体和不在实用情况下一般显示semiconductive行为。 电子迁移率 在确定材料的不拘形式的分类也扮演一个角色。带隙取决于温度由于 热扩散. 带隙也取决于压力。 带隙可以是二者之一 直接 或 间接bandgaps根据 带状组织.材料 标志 带隙(eV) @ 300K 硅 Si 1.11 [1] 锗 Ge 0.67 [1] 碳化硅 SiC 2.86 [1] 铝磷化物 阿尔卑斯 2.45 [1] 铝砷化物 呀 2.16 [1] 铝锑化物 AlSb 1.6 [1] 铝氮化物 AlN 6.3 金刚石 C 5.5 镓(III)磷化物 空白 2.26 [1] 镓(III)砷化物 GaAs 1.43 [1] 镓(III)氮化物 GaN 3.4 [1] 镓(II)硫化物 气体 2.5 (@ 295 K) 镓锑化物 GaSb 0.7 [1] 铟(III)磷化物 InP 1.35 [1] 铟(III)砷化物 InAs 0.36 [1] 锌硫化物 ZnS 3.6 [1] 锌硒化物 ZnSe 2.7 [1] 锌碲化物 ZnTe 2.25 [1] 硫化镉 CdS 2.42 [1] 镉硒化物 CdSe 1.73 [1] 碲化镉 CdTe 1.49 [2] 主角(II)硫化物 PbS 0.37 [1] 主角(II)硒化物 PbSe 0.27 [1] 主角(II)碲化物 PbTe 0.29 [1]确定半导体是直接带隙还是间接带隙的可以用光致发光光谱。
光效率很大的话差不多就是直接带隙,发光效率低的话就是间接带隙。直接带隙材料吸收光谱应该能比较明显地区分出本征吸收带和吸收边,变化相对较缓,而间接带隙材料比较陡峭。
间接带隙半导体材料(如Si、Ge)导带最小值(导带底)和满带最大值在k空间中不同位置。形成半满能带不只需要吸收能量,还要改变动量。
电子在k状态时的动量是(h/2pi)k,k不同,动量就不同,从一个状态到另一个必须改变动量。与之相对的直接带隙半导体则是电子在跃迁至导带时不需要改变动量。
扩展资料:
光致发光过程包括荧光发光和磷光发光。通常用于半导体检测和表征的光致发光光谱指的是光致荧光发光。
光致发光特点:
1、光致发光优点
设备简单,无破坏性,对样品尺寸无严格要求;分辨率高,可做薄层和微区分析。
2、光致发光缺点
通常只能做定性分析,而不作定量分析;如果做低温测试,需要液氦降温,条件比较苛刻;不能反映出非辐射复合的深能级缺陷中心。
参考资料来源:百度百科--光致发光光谱
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)