制备单晶的关键是什么,如何制备单晶

制备单晶的关键是什么,如何制备单晶,第1张

所谓单晶,即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。由于熵效应导致了固体微观结构的不理想,例如杂质,不均匀应变和晶体缺陷,有一定大小的理想单晶在自然界中是极为罕见的,而且也很难在实验室中生产。另一方面,在自然界中,不理想的单晶可以非常巨大,例如已知一些矿物,如绿宝石,石膏,长石形成的晶体可达数米。单晶生长制备方法大致可以分为气相生长、溶液生长、水热生长、熔盐法、熔体法。最常见的技术有提拉法、坩埚下降法、区熔法、定向凝固法等;目前除了众多的实际工程应用方法外,借助于计算机和数值计算方法的发展,也诞生了不同的晶体生长数值模拟方法。特别是生产前期的分析和优化大直径单晶时,数值计算尤为重要。一、挥发法原理:依靠溶液的不断挥发,使溶液由不饱和达到饱和过饱和状态 。条件:固体能溶解于较易挥发的有机溶剂理论上,所有溶剂都可以,但一般选择60~120℃ 。注意:不同溶剂可能培养出的单晶结构不同方法:将固体溶解于所选有机溶剂,有时可采用加热的办法使固体完全溶解,冷却至室温或者再加溶剂使之不饱和,过滤,封口,静置培养 。二、扩散法原理:利用二种完全互溶的沸点相差较大的有机溶剂。固体易溶于高沸点的溶剂,难溶或不溶于低沸点溶剂。

此法为最常用方法,是从结晶物质的熔体中生长晶体。适用于光学半导体,激光技术上需要的单晶材料。

(一)晶体生长的必要条件。

根据晶体生长时体系中存在的——由熔体(m)向晶体(C)自发转变时——两相间自由焓的关系:Gm(T)>Gc(T),即△G=Gc(T)-Gm(T)≈△He-Te△Se-△T△Se=△T△Se<0。结晶时, △Se>0,只有△T<0 。熔体单晶体生长的必要条件是:体系温度低于平衡温度。体系温度低于平衡温度的状态称为过冷。△T的绝对值称为过冷度。过冷度作为熔体晶体生长的驱动力。一般情况:该值越大,晶体生长越快。当值为零时,晶体生长停止。

(二)晶体生长的充分条件

晶体生长是发生在固-液(或晶-液)界面上。通常为保证晶体粒生长只需使固-液界面附近很小区域熔体处于过冷态,绝大部分熔体处于过热态(温度高于Te )。已生长出的晶体温度又需低于Te。就是说整个体系由熔体到晶体的温度由过热向过冷变化。过热与过冷区的界面为等温区。此面与晶体生长界面间的熔体为过冷熔体。且过冷度沿晶体生长反方向逐渐增大。晶体的温度最低。这种由晶体到熔体方向存在的温度梯度是热量输运的必要条件。热量由熔体经生长面传向晶体,并由其转出。

晶体生长的充分条件:(dT/dz)c一定、(dT/dz)m为零时,整个区域熔体处于过冷态,晶体生长速率最大。对于一定结晶物质,过冷度一定时,决定晶体生长速率的主要因素是晶体与熔体温度梯度(dT/dz)c与(dT/dz)m的相对大小。只有晶体温度梯度增大,熔体温度梯度减少,才能提高晶体生长速度。需指出:晶体生长速度并非越大越好,太大会出现不完全生长,影响质量。

(三)晶体生长方法

1 提拉法:提拉法适于半导体单晶Si、Ge及大多数激光晶体。

工艺流程:

1)同成分的结晶物质熔化,但不分解,不与周围反应。

2)预热籽晶,旋转着下降后,与熔体液面接触,待熔后,缓慢向上提拉。

3)降低坩埚温度或熔体温度梯度,不断提拉籽晶,使其籽晶变大。

4)等径生长:保持合适的温度梯度与提拉速度,使晶体等径生长。

5)收晶:晶体生长所需长度后,拉速不变,升高熔体温度或熔体温度不变,加快拉速,使晶体脱离熔体液面。

6)退火处理晶体。

2 坩埚下降法:

在下降坩埚的过程,能精密测温,控温的设备中进行。过热处理的熔体降到稍高于凝固温度后,下降至低温区,实现单晶生长,并能继续保持。

3 泡生法:

过热熔体降温至稍高于熔点,降低炉温或冷却籽晶杆,使籽晶周围熔体过冷,生长晶体。控制好温度,就能保持晶体不断生长。

4 水平区熔法:

盛有结晶物质的坩埚,在带有温度梯度的加热器,从高温区向低温区移动,完成熔化到结晶过程。

以上四种晶体生长使用的坩埚,应具备:熔点高于工作温度200℃,不与熔体互熔起化学反应,良好的加工性及抗热震性,热膨胀系数与结晶物质相近,常用铂、铱、钢、石墨、石英及其它高熔点氧化物。 以水、重水或液态有机物作溶剂的溶液中,可生长完整均匀的大尺寸单晶体。

(一)晶体生长基本原理

1 晶体生长的必要条件:一定温度条件下,溶液的浓度大于该温度下的平衡浓度(即饱和浓度)称过饱和,其大于的程度称过饱和度,它是溶液法晶体生长的驱动力。

2 晶体生长的充分条件:把溶液的过饱和状态控制在亚稳定区内,避免进入不稳定或稳定区。

(二)晶体生长方法

1 降温法:利用不断降温并维持溶液亚稳过饱和态,以实现晶体不断生长的方法。

2 流动法:控制饱和槽和生长槽间温差及流速并使其处于亚稳过饱和态。维持晶体不断生长。

3 蒸发法:利用不断蒸发溶剂,并控制蒸发速度,维持溶液处于亚稳的过饱和状态,实现晶体的完全生长。

4 电解溶剂法:利用电解原理,不断从体系中去除溶剂,以维持溶液过饱和状态,实现晶体不断生长。关键是控制电解电流,即溶剂电解速度保持体系处于亚稳区。

5 凝胶法:两物质的溶液通过凝胶扩散,相遇,经化学反应,生成结晶物质,并在凝胶中成核,长大。 (一)基本原理

高温溶液法生长的结晶物质,须在高温下,溶于助溶剂,形成过饱和溶液。因此,助溶剂选择,溶液相关系的确定,是溶液生长晶体的先决条件。

助溶剂应具备的条件:

1)对结晶物质有足够大溶解度,并在生长温度范围内,有适宜的溶解度温度系数。

2)与溶质的作用应是可逆的,形成的晶体是唯一、稳定的。

3)具有尽可能高的沸点及尽可能低的溶点。

4)含有与结晶物质相同的离子。

5)粘滞性不大,利于溶质扩散和能量运输。

6)无毒、无腐蚀性。

7)可用适当溶液或溶剂溶解。

(二) 晶体生长方法

1 缓冷法及改进技术

以0.2-5℃/h的速度,使处在过饱和态的高温溶液降温,先慢后快,防止过多成核。温度降到出现其它相或溶解的温度系数近于0时,较快速降温。并用适当的溶剂溶掉凝固在晶体周围的溶液,便得晶体。

改进技术

(1)坩埚局部过冷(2)采用复合助熔剂(3)变速旋转坩埚(4)刺破坩埚以利于分离。

2 助溶剂挥发法:恒温下借助助溶剂的挥发,使溶液保持亚稳定过饱和态,以保持晶体生长。

3 籽晶降温法:引入籽晶后,靠不断降温维持溶液的亚稳定过饱和度,保持晶体不断生长。

晶体是十分奇妙、美丽而又用途巨大,而自然界中天然形成的晶体多含有大量的缺陷,从而影响到它的应用。在实验室中,采用精巧的设备,严格设定晶体生长所需的温度、气氛和组分,通过严格控制的条件可以生长出符合需要的高质量晶体。 (一)基本原理

利用运输反应来控制反应的进行,其生成物必须是挥发性的,且要有唯一稳定的固体相(所希望的)生成,ΔG→0?反应易为可逆,平衡时,反应物与生成物有足够的量。

(二) 晶体生长方法

1 升华法

将固体顺着温度梯度通过晶体在管子的冷端从气相中生长的方法。

即:在高温区蒸发原料,利用蒸气的扩散,让固体顺着温度梯度通过晶体在冷端形成并生长的方法。

固→气→固常压升华

常压升华(P>1 atm):As、P、CdS

减压升华(P<1 atm):雪花、ZnS、CdSe、HgI2

2 蒸气运输法

在一定的环境相下?利用运载气体来帮助源的挥发和运输?从而促进晶体生长的方法。通常采用卤素作运输剂。在极低的氯气压力下观察钨的运输?发现在加热的钨丝中,钨从较冷的一根转移到较热的一根上。

冷端:W+3Cl2↹WCl6

W以氯化物的形式挥发;热端、分解、沉积出W,规则排列,生长出单晶体。此法常用来提纯材料和生长单晶体。不仅可以生长纯金属单晶,也可用于生长二元或三元化合物。如:ZnIn2S4、HgGa2S2、ZnSiP2。

3 气相反应生长法让各反应物直接进行气相反应生成晶体的方法。成为工业上生产半导体外延晶体的重要方法之一,常用于制膜,如TiC、GaAs。

目前人类科技的镍基单晶材料共有五代。

首先,把高纯度的多晶硅原料放入高纯石英坩埚,通过石墨加热器产生的高温将其熔化;然后,对熔化的硅液稍做降温,使之产生一定的过冷度,再用一根固定在籽晶轴上的硅单晶体(称作籽晶)插入熔体表面,待籽晶与熔体熔和后,慢慢向上拉籽晶,晶体便会在籽晶下端生长;接着,控制籽晶生长出一段长为100m 单晶硅生长炉

m左右、直径为3~5mm的细颈,用于消除高温溶液对籽晶的强烈热冲击而产生的原子排列的位错,这个过程就是引晶;随后,放大晶体直径到工艺要求的大小,一般为75~300mm,这个过程称为放肩;接着,突然提高拉速进行转肩 *** 作,使肩部近似直角;然后,进入等径工艺,通过控制热场温度和晶体提升速度,生长出一定直径规格大小的单晶柱体;最后,待大部分硅溶液都已经完成结晶时,再将晶体逐渐缩小而形成一个尾形锥体,称为收尾工艺;这样一个单晶拉制过程就基本完成,进行一定的保温冷却后就可以取出。 直拉法,也叫切克劳斯基(J.Czochralski)方法。此法早在1917年由切克劳斯基建立的一种晶体生长方法,用直拉法生长单晶的设备和工艺比较简单,容易实现自动控制,生产效率高,易于制备大直径单晶,容易控制单晶中杂质浓度,可以制备低电阻率单晶。据统计,世界上硅单晶的产量中70%~80%是用直拉法生产的


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7084545.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-01
下一篇 2023-04-01

发表评论

登录后才能评论

评论列表(0条)

保存