丝状金,具有纯金的良好延展性,能方便地加工成各种规格的金丝产品。
直径1mm以下的丝状金。纯金具有良好的延展性,能方便地加工成各种规格的金丝供饰品、牙科材料及一些工业部门应用,一般可分为普通金丝与键合金丝。
在集成电路和半导体器件中,键合金丝作为连接引线将半导体芯片与外部连接起来,这种连接是依靠热压球焊或超声腊煮悼阿热压球焊完成的,所以这种金丝又称为球焊金丝。由于集成电路生产的特点,这种连接要求高速可靠地完成,高速自动键合机每秒能完成4~8条连线。键合金丝在世界各国都作为重要的高技术产品。
黄金则包括足金和k金,它们都属于贵金属。只是含金量不同,制作而成的首饰价格和纯度也各不相同。
如果带电体的静电势或存储的静电能量较低,或ESD回路有限流电阻存在,一次ESD脉冲不足以引起器件发生突发性完全失效,但它会在器件内部造成轻微损伤,这种损伤又是积累性的。随着ESD脉冲次数增加,器件的损伤阈值电压逐渐下降,器件的电参数逐渐劣化,这类失效称为潜在性失效。潜在性失效的表现往往是器件的使用寿命缩短,或者一个本来不会使器件损伤的小脉冲却使该器件失效。潜在性失效降低了器件抗静电的能力,降低了器件的使用可靠性。半导体器件潜在性失效主要表现为:(1)栅氧化层损伤
MOS栅氧化层受到ESD的作用,会产生细微损伤,有时会导致栅极泄漏电流少量增加。这种情况的发生可能是由于放电时形成丝状铝硅合金,该合金尚不能跨接整个栅氧化物,使得受损的氧化层击穿电压降低,在使用时就可能由于低能量EOS或者ESD使得已经受损的氧化层击穿,从而使器件失效。栅氧化层的击穿机理,目前认为可分为两个阶段:
第一阶段是建立阶段,或称为磨损阶段。在电应力作用下,氧化层内部及Si-SiO2界面处发生缺陷(陷阱、电荷)的积累,积累的缺陷达到某一程度后,使局部区域的电场(或缺陷数)达到某一临界值,转入下一阶段:
第二阶段是在热、电正反馈作用下,迅速使氧化层击穿的过程。栅氧寿命主要由第一阶段中的建立时间所决定。对电应力下氧化层中及界面处产生的缺陷,一般多认为是电荷引起的,对电荷的性质,主要有二种理论模型:负电荷积累模型和正电荷积累模型(此处不作详细说明)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)