半导体中有两种
载流子:自由电子和
空穴。在热力学温度零度和没有外界能量激发时,价电子受共价键的束缚,晶体中不存在自由运动的电子,
半导体是不能导电的。但是,当半导体的温度升高(例如室温300oK)或受到光照等外界因素的影响,某些共价键中的价电子获得了足够的能量,足以挣脱共价键的束缚,跃迁到导带,成为自由电子,同时在共价键中留下相同数量的空穴。空穴是半导体中特有的一种粒子。它带正电,与电子的电荷量相同。把热激发产生的这种跃迁过程称为本征激发。显然,本征激发所产生的自由电子和空穴数目是相同的。 由于空穴的存在,临近共价键中的价电子很容易跳过去填补这个空穴,从而使空穴转移到临近的共价键中去,而后,新的空穴又被其相邻的价电子填补,这一过程持续下去,就相当于空穴在运动。带负电荷的价电子依次填补空穴的运动与带正电荷的粒子作反方向运动的效果相同,因此我们把空穴视为带正电荷的粒子。可见,半导体中存在两种载流子,即带电荷+q的空穴和带电荷–q的自由电子。 在没有外加电场作用时,载流子的运动是无规则的,没有定向运动,所以形不成电流。在外加电场作用下,自由电子将产生逆电场方向的运动,形成电子电流,同时价电子也将逆电场方向依次填补空穴,其导电作用就像空穴沿电场运动一样,形成空穴电流。虽然在同样的电场作用下,电子和空穴的运动方向相反,但由于电子和空穴所带电荷相反,因而形成的电流是相加的,即顺着电场方向形成电子和空穴两种漂移电流。 在本征半导体硅(或锗)中掺入少量的五价元素,如磷、砷或锑等,就可以构成N型半导体。若在锗晶体中掺入少量的砷原子如图1所示,掺入的砷原子取代了某些锗原子的位置。砷原子有五个价电子,其中有四个与相邻的锗原子结合成共价键,余下的一个不在共价键内,砷原子对它的束缚力较弱,因此只需得到极小的外界能量,这个电子就可以挣脱砷原子的束缚而成为自由电子。这种使杂质的价电子游离成为自由电子的能量称为电离能。这种电离能远小于禁带宽度EGO,所以在室温下,几乎所有的杂质都已电离而释放出自由电子。杂质电离产生的自由电子不是共价键中的价电子,因此,与本征激发不同,它不会产生空穴。失去一个价电子的杂质原子成为一个正离子,这个正离子固定在晶格结构中,不能移动,所以它不参与导电。 由于砷原子很容易贡献出一个自由电子故称为“施主杂质”。失去一个价电子而电离的杂质原子,称为“施主离子”。施主杂质的浓度用ND表示。 砷原子对第5个价电子的束缚力较弱,反应在能带图上,就是该电子的能级非常接近导带底,称施主能级ED,其能带图如图2所示。在砷原子数量很少时,各施主能级间几乎没有什么影响,施主能级处于同一能量水平。 施主能级ED和导带底能级EC之差称为施主电离能级EiD。对锗中掺有砷的杂质半导体,约为0.0127eV,比锗的禁带宽度0.72eV小的多。在常温下,几乎所有砷施主能级上的电子都跳到了导带,成为自由电子,留下的则是不能移动的砷施主离子。因此,N型半导体的自由电子由两部分构成,一部分由本征激发产生,另一部分由施主杂质电离产生,只要在锗中掺入少量的施主杂质,就可以使后者远远超过前者。例如每104个锗原子中掺入一个砷原子,锗的原子密度是4.4´1022/cm3,在单位体积中就掺入了4.4´1018个砷原子,即施主杂质浓度ND=4.4´1018/cm3。在室温下,施主杂质电离产生的自由电子浓度n=ND=4.4´1018/cm3。而锗本征激发产生的自由电子浓度ni=2.5´1013/cm3,可见由杂质提供的自由电子浓度比本征激发产生的自由电子浓度大10万倍。由于自由电子的大量增加,使得电子与空穴复合机率增加,因而空穴浓度急剧减小,在热平衡状态下,空穴浓度Pn比本征激发产生的空穴浓度pi要小的多。因此,N型半导体中,自由电子浓度远大于空穴浓度,即nn>>pn。因为自由电子占多数,故称它为多数载流子,简称“多子”;而空穴占少数,故称它为少数载流子,简称“少子”。 在本征半导体硅(或锗)中掺入少量的三价元素,如硼、铝或铟等,就可以构成P型半导体。若在锗晶体中掺入少量的硼原子如图3所示,掺入的硼原子取代了某些锗原子的位置。硼原子有三个价电子,当它与相邻的锗原子组成共价键时,缺少一个电子,产生一个空位,相邻共价键内的电子,只需得到极小的外界能量,就可以挣脱共价键的束缚而填补到这个空位上去,从而产生一个可导电的空穴。由于三价杂质的原子很容易接受价电子,所以称它为“受主杂质”。 硼的受主能级EA非常接近价带顶EV,即受主电离能级EiA=EA-EV之值很小,受主能级几乎全部被原价带中的电子占据,受主杂质硼全部电离。受主杂质接受了一个电子后,成为一个带负电荷的负离子。这个负离子固定在锗晶格结构中不能移动,所以不参与导电。在常温下,空穴数大大超过自由电子数,所以这类半导体主要由空穴导电,故称为P型或空穴型半导体。P型半导体中,空穴为多数载流子,自由电子为少数载流子。 杂质半导体中,施主杂质和受主杂质要么处于未离化的中性态,要么电离成为离化态。以施主杂质为例,电子占据施主能级时是中性态,离化后成为正电中心。因为费米分布函数中一个能级可以容纳自旋方向相反的两个电子,而施主杂质能级上要么被一个任意自旋方向的电子占据(中性态),要么没有被电子占据(离化态),这种情况下电子占据施主能级的几率为 如果ED-EF>>k0T,则未电离施主浓度nD≈0,而电离施主浓度nD+≈ND,杂质几乎全部电离。 如果费米能级EF与施主能级ED重合时,施主杂质有1/3电离,还有2/3没有电离。 杂质半导体载流子浓度(n型) n型半导体中存在着带负电的导带电子(浓度为n0)、带正电的价带空穴(浓度为p0)和离化的施主杂质(浓度为nD+),因此电中性条件为 一般求解此式是有困难的。 实验表明,当满足Si中掺杂浓度不太高并且所处的温度高于100K左右的条件时,那么杂质一般是全部离化的,这样电中性条件可以写成 一般Si平面三极管中掺杂浓度不低于5×1014cm-3,而室温下Si的本征载流子浓度ni为1.5×1010cm-3,也就是说在一个相当宽的温度范围内,本征激发产生的ni与全部电离的施主浓度ND相比是可以忽略的。这一温度范围约为100~450K,称为强电离区或饱和区,对应的电子浓度为 一般n型半导体的EF位于Ei之上Ec之下的禁带中。 EF既与温度有关,也与杂质浓度ND有关: 一定温度下掺杂浓度越高,费米能级EF距导带底Ec越近;如果掺杂一定,温度越高EF距Ec越远,也就是越趋向Ei。图5是不同杂质浓度条件下Si中的EF与温度关系曲线。 n型半导体中电离施主浓度和总施主杂质浓度两者之比为 越小,杂质电离越多。所以掺杂浓度ND低、温度高、杂质电离能ΔED低,杂质离化程度就高,也容易达到强电离,通常以I+=nD+/ND=90%作为强电离标准。经常所说的室温下杂质全部电离其实忽略了掺杂浓度的限制。 杂质强电离后,如果温度继续升高,本征激发也进一步增强,当ni可以与ND比拟时,本征载流子浓度就不能忽略了,这样的温度区间称为过渡区。 处在过渡区的半导体如果温度再升高,本征激发产生的ni就会远大于杂质电离所提供的载流子浓度,此时,n0>>ND,p0>>ND,电中性条件是n0=p0,称杂质半导体进入了高温本征激发区。在高温本征激发区,因为n0=p0,此时的EF接近Ei。 可见n型半导体的n0和EF是由温度和掺杂情况决定的。 杂质浓度一定时,如果杂质强电离后继续升高温度,施主杂质对载流子的贡献就基本不变了,但本征激发产生的ni随温度的升高逐渐变得不可忽视,甚至起主导作用,而EF则随温度升高逐渐趋近Ei。 半导体器件和集成电路就正常工作在杂质全部离化而本征激发产生的ni远小于离化杂质浓度的强电离温度区间。 在一定温度条件下,EF位置由杂质浓度ND决定,随着ND的增加,EF由本征时的Ei逐渐向导带底Ec移动。 n型半导体的EF位于Ei之上,EF位置不仅反映了半导体的导电类型,也反映了半导体的掺杂水平。 图6是施主浓度为5×1014cm-3的n型Si中随温度的关系曲线。低温段(100K以下)由于杂质不完全电离,n0随着温度的上升而增加;然后就达到了强电离区间,该区间n0=ND基本维持不变;温度再升高,进入过渡区,ni不可忽视;如果温度过高,本征载流子浓度开始占据主导地位,杂质半导体呈现出本征半导体的特性。 如果用nn0表示n型半导体中的多数载流子电子浓度,而pn0表示n型半导体中少数载流子空穴浓度,那么n型半导体中 也就是说在器件正常工作的较宽温度范围内,随温度变化少子浓度发生显著变化,因此依靠少子工作的半导体器件的温度性能就会受到影响。对p型半导体的讨论与上述类似。电流向右,磁场垂直向内,故粒子受到的洛伦兹力向上,由于样品上表面带正电,故载流子是带正电的“空穴”,是P型半导体;
最终洛伦兹力和电场力平衡,有:
qvB=q
①
电流的微观表达式为:
I=nqvS ②
联立解得:
n=
故选:B.
在物理学中,载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴引)被视为载流子。
金属中为电子,半导体中有两种载流子即电子和空穴。在电场作用下能作定向运动的带电粒子。如半导体中的自由电子与空穴,导体中的自由电子,电解液中的正、负离子,放电气体中的离子等。
载流子与半导体的关系
载流子,是承载电荷的、能够自由移动以形成电流的物质粒子。半导体的性质跟导体和绝缘体不同,是因为其能带结构不同;
而半导体的导电能力可以控制,主要是因为其载流子的种类和数量与导体和绝缘体不同,并且可以受到控制,其调节手段就是“掺杂”,即往纯净的半导体中掺入杂质,来改变其载流子数量、分布和运动趋势,从而改变整体导电性能。
绝缘体和金属导体的载流子是电子,而半导体除了电子外,还有一种载流子叫空穴。另外还有正离子、负离子也都带有电荷,但是在半导体中,它们一般不会流动,所以认为半导体的载流子就是电子和空穴这两种。
电子作为载流子容易理解,因为物质中的原子是由原子核和电子组成的,在一定条件下挣脱原子核束缚的自由电子可以运动,因而产生电流。
而所谓空穴,就是由于电子的缺失而留下的空位。这就好像车与车位的关系,假设有一排共5个车位,从左边开始按顺序停了4辆车,最右边有1个空位,如果最左边的车开到最右边的空位上去,那么最左边的车位就空出来了。
看起来好像是空位从右边到了左边,这是一种相对运动,车从左到右的移动,相当于空位从右到左的移动。同样道理,带负电的电子的运动,可看作是带正电的空穴的反方向运动。
在没有杂质的纯净半导体中,受热激发产生的移动的电子数量和空穴数量是相等的,因为带负电的电子和带正电的空穴会进行复合,在数量大致相等的情况下,“产生”和“复合”会达到一个动态平衡,这样宏观上看来并没有产生有效电流。为了改善其导电性能,就引入了掺杂手段。
对集成电路来说,最重要的半导体材料是硅。硅原子有4个价电子,它们位于以原子核为中心的四面体的4个顶角上。这些价电子会与其他硅原子的价电子结合成共价键,大量的硅原子以这种方式互相结合,形成结构规律的晶体。
如果给它加入砷(或磷),砷最外层有5个电子,其中4个电子也会跟硅原子的4个价电子结合成共价键,把砷原子固定在硅材料的晶格中。此时会多出1个自由电子,这个电子跃迁至导带所需的能量较低,容易在硅晶格中移动,从而产生电流。
这种掺入了能提供多余电子的杂质而获得导电能力的半导体称为N型半导体,“N”为Negative,代表带负电荷的意思。
如果我们在纯硅中掺入硼(B),因为硼的价电子只有3个,要跟硅原子的4个价电子结合成共价键,就需要吸引另外的1个电子过来,这样就会形成一个空穴,作为额外引入的载流子,提供导电能力。这种掺入可提供空穴的杂质后的半导体,叫做P型半导体,“P”是Positive,代表带来正电荷的意思。
需要注意的是,掺入杂质后的半导体中仍然同时具有电子和空穴这两种载流子,只是各自数量不同。在N型半导体中,电子(带负电荷)居多,叫多数载流子,空穴(带正电荷)叫少数载流子。在P型半导体中,则反之:空穴为多数载流子,电子为少数载流子;可以分别简称为“多子”、“少子”。
一、多数载流子和少数载流子
在半导体中,电子和空穴作为载流子。数目较多的载流子称为多数载流子;在N型半导体中多数载流子是电子,而在P型半导体中多数载流子是空穴。数目较少的载流子称为少数载流子;在N型半导体中少数载流子是空穴,而在P型半导体中少数载流子是电子。
少数载流子在双极性晶体管和太阳能电池中起重要作用。不过,此种载流子在场效应管(FET)中的作用是有些复杂的:例如,MOSFET兼有P型和N型。晶体管涉及到源漏区,但这些少数载流子横穿多数载流子体。
不过在传送区内,横穿的载流子比其相反类型载流子的数目多得多(实际上,相反类型的载流子会被外加电场移除而形成耗尽层),因此按惯例为源漏选定的载流子是可采用的,而FET被称为“多数载流子”设备。
当电子遇到空穴时,二者复合后自由载流子就很快消失了。释放的能量可以是热,会加热半导体(热复合,半导体中废热的一个来源),或者释放光子(光复合,用于LED和半导体激光中)。
二、自由载流子浓度
自由载流子浓度是浓度自由载流子在掺杂半导体。它类似于金属中的载流子浓度,并且可以以相同的方式用于计算电流或漂移速度。
自由载流子是通过掺杂直接引入导带(或价带)并且没有被热促进的电子(或空穴)。由于这个原因,电子(空穴)不会通过在另一个能带中留下空穴(电子)来充当双载流子。换句话说,电荷载流子是可以自由移动(携带电荷)的粒子/电子。
以上内容参考 百度百科-载流子
评论列表(0条)