一个长度大约32公里的工业区,位于加利福尼亚的Palo Alto(帕拉托)和San Jose(圣何塞)之间,许多制造和设计电脑晶片的公司位于此处,名称来源于用来制造这些电子装置的高纯度的硅。
硅谷(Silicon Valley)一词是1971年当地报纸的编辑霍夫勒最先使用的,用来指旧金山湾南端沿101高速公路,从门罗公园(MenloPark)、帕拉托(Palo Alto),经山景市(Mountain View)、桑尼维尔(Sunnyvale)到硅谷的中心圣克拉拉(Santa Clara),再经坎贝尔(Campbell)拐到圣何塞(San Jose)这条狭长地带。
它既不是盛产石头的峡谷,又不是喧嚣而拥挤的一条街,而是蓝天下绿阴中一系列新兴小城市。从60年代起这一地区飞速发展,成为高科技工业中心,创造了巨大的物质财富,取得了引以骄傲的非凡成就。
硅谷的历史应该从斯坦福大学说起。1885年美国中西部著名的铁路大王斯坦福(Leland Stanford Senior)捐献了帕拉托附近的8800英亩土地和2000万美金,并于1891年创建了斯坦福大学。如今的斯坦福大学已成为世界第一流的大学。
国际教师协会根据目前院校业绩、学术成就以及学生素质,排出世界十所最佳大学的名次是:斯坦福大学、哈佛大学、麻省理工学院、加州大学伯克利分校、普林斯顿大学、剑桥大学、耶鲁大学、牛津大学、东京大学、慕尼黑工业大学。
当然,还有其他排行次序,但令人信服的是斯坦福总是雄踞榜首。在上述十所世界第一流大学中,斯坦福是最年轻的一所,然而它像一台强劲的火车头,带动着硅谷这列长长的列车迅猛前进。这就是我们所知道的高科技园区的基本形象。
1906年利德弗瑞斯特(Lee de Forest)发明了电子管,他工作的联邦电报公司就在帕拉托。1912年他在斯坦福大学的帮助下又研制成功电子放大器,揭开了现代电子技术的序幕。
创建斯坦福研究园区
斯坦福大学1920年毕业生弗雷德·特曼(Frederic Terman)先后在麻省理工、哈佛、斯坦福担任教授,他才华横溢,在硅谷的发展过程中扮演了极重要的角色。1939年,在特曼的指导和支持下,他的两个学生,比尔·休利特(Bill Hewlett)和戴维·帕卡德(Dave Packard),在一间汽车房里以538美元作资本建立了公司,开始生产电子仪器,这就是著名的惠普(Hewlett-Packard)公司的来历。1995年惠普公司营收315亿美元,利润24亿美元,全球雇员10万2000人。当年惠普公司起家的汽车房由加州政府公布为硅谷发源地而成为重要的旅游景点。
特曼教授的另一个重要贡献是他在1951年提出创建斯坦福研究园区(Stanford Research Park)的构想。这就是全球最早的位于大学附近的高科技工业园区。1955年7家公司迁入园内,1906年增至32家,1985年扩大到90多家。这些公司既信托大学的最新科技,又租用该校655英亩的土地,连年不断的地租收入成为斯坦福大学的经济来源。这也是斯坦福大学兴旺发达的原因之一。
1955年威廉·肖克利(William Shockley)西迁是硅谷半导体开始起步的重要里程碑。肖克利1910年生于英国伦敦,后移居美国帕拉托,1973年到贝尔实验室工作。1947年12月23日他和理论物理学家巴丁(John Bardeen)、实验物理学家布拉坦(Walter Brattain)制成了世界第一个晶休管,这项发明有人称之为“本世纪最重要的发明”。1949年肖克利又提出PN结理论,次年就制成具有PN结的锗晶休管,由于这些意义深远的发明,他们3人分享了1956年度的诺贝尔(物理)奖金。
1955年,肖克利返回帕拉托建立自己的公司——肖克利半导体实验室 (ShockleySemiconductor Laboratories)。在此之前,尚未成熟的半导体工业一直集中在美国东部的波士顿和纽约长岛等地,肖克利的公司是硅谷第一家真正的半导体公司。他从东部召来了8位优秀青年,人称“肖克利八杰”,其中包括诺宜斯(Robert Noyce)、摩尔(Gordon Moore)、斯波克(Charhe Spork)、雷蒙德(Pierre Lamond)等人。1960年肖克利卖掉自己的公司,去斯坦福任教。他创建的半导体实验室夭折了,但他播下的种子却在硅谷茁壮成长。
在诺宜斯带领下,“肖克利八杰”于1957年集体跳槽,离开肖克利半导体实验室,在工业家费尔柴尔德(Sherman Fairchild)资助下,另创仙童半导体公司(Fairchild Semiconductor Corp)。仙童公司总部位于纽约,除经营照相机与仪器外,还有许多关系企业,其中发展最快的还是位于硅谷山景市的仙童半导体公司。
创业后不久。由于诺宜斯发明了集成电路(integrated circuit)技术,可以将多个晶体管集成一片晶片上,使仙童公司从一开始就有平步青云的发展。1965年摩尔总结了集成电路上晶体管数每18个月翻一番的规律,人称摩尔定律。虽然它是根据1959-65年的数据归纳的,但至今仍然有效。1967年,成立10年的仙童半导体的营业额已达1亿9600万美元。
此时正是硅谷形成的早期,整个硅谷大环境生气蓬勃,欣欣向荣,几乎每个星期都有新公司诞生。仙童公司也正经历一场惊天动地的大变革。
1967年初,斯波克与雷蒙等人决定脱离仙童半导体公司,另创国民半导体公司(National Semiconductor),位于圣克拉拉。1968年仙童公司行销经理桑德斯(Jerry Sanders)自创超微科技(Advanced Micro Device)即AMD公司。现超微科技已成为世界第二大电脑晶片生产商。1968年7月诺宜斯、摩尔、葛洛夫离开仙童,创建了英特尔公司( Intel),总部设在圣克拉拉。今天英特尔发展成世界上最大的半导体集成电路厂商,在中央市场占世界80%的份额。
1976年苹果电脑公司成立
1970年阿姆达尔(Gene Amdahl)离开国际商业机器在桑尼维尔建立了Amdahl公司,专门生产研制与国际商业机器大型机兼容的机器,在性能价格比方面超过国际商业机器的系统,成为小公司向大霸主挑战的典范。1974年费根(Federico Faggin)在石油巨子艾克森(Exxon)企业的支持下,于坎贝尔建立了Zilog公司(他曾领导英特尔公司早期4004晶片的设计工作)。1975年该公司推出很成功的Z80晶片。1975年梅隆(Roger Mellon)在山景市建立了Comemco公司。他是斯坦福的毕业生,用上学时所住宿舍的名字给公司命名。公司生产的微机最早打入中国市场。
1976年两位在硅谷长大的同名好友乔布斯(Steve Jobs)和渥滋尼克(Steve Wozniak)在Cupertino创立了苹果电脑公司。他们没念完大学(Jobs从里德大学退学进入惠普公司,Woz则离开伯克利分校到Atari公司搞电脑)。由于Jobs经营有方,Woz擅长技术,两人优势互补,使公司很快得到发展。1977年推出的苹果 II一直是8位微机的重要角色,1984年推出的麦金塔Macintosh)更是界面友好的楷模,广泛应用于美术设计和出版领域。苹果公司始终站在微机技术的前沿,1995年公司的营业额仍有113亿美元。
1981年对仙童半导体公司是灾难性的一年。它设在圣何塞南部的晶片厂发生有毒溶液的大量泄漏。公司不得不花费1200万美元来更换土壤和监测水质。于是仙童公司逐渐一蹶不振,销声匿迹。人们不会忘记它在开创硅片技术上的丰功伟绩,由仙童雇员创办的公司在硅谷乃至全国已超过百家,影响深远。
1982年,又一个光辉的名字升阳(Sun Microsystems)在硅谷出现。升阳原来是斯坦福大学网络的缩写。三位创始人AndyBechtolsheim、Vinod Khosla、Scott McNealy都是风华正茂的青年。担任公司董事长兼总裁的Scott McNealy毕业于哈佛大学经济系,后来又在斯坦福取得管理硕士学位。他与世界软件巨子比尔·盖茨同龄,自信是能与之抗衡的对手。升阳公司在工作站领域取得龙头老大地位,它的 Sparc/Solaris平台正活跃在客户/服务器这一充满活力的领域。
近一两年网际网络( Internet)的发展如日中天,升阳公司推出的新一代编程语言Java开始成为目前公认的国际互联网上的世界语。在此基础上升阳公司与国际商业机器、苹果等公司一起提出了网络电脑(Network Computer)的概念,力图掀起一场新的设计算机领域的革命,打破微软和英特尔的垄断地位。
对硅谷发展至关重要五因素
以上我们通过惠普、英特尔、苹果、升阳这些公司的成长描绘了硅谷发展轮廓。在硅谷世界著名的公司还有很多。如,在山景市的还有Netscape Communications(出品风靡全球的网络浏览软件“导航者 Navigator”),Adobe Systems(世界最优秀的桌面出版系统供应商,如Photoshop,Adobe Pagemaker等),Instuit(优秀财务软件开发商),System Plus等。在圣克拉拉的还有3Com,BayNetworks,
Claris,McAfeeAssociates,AirCommunications,
Memorex,Plextor,AmericanMicrosystem,Phoenix Technologies,
Insignia Solutions,UB Networks等。在圣何塞的还有Unisys,
AcerAmerica,Cisco Systems,Sony Electronics,ADISystems,
Madge Networks, Diamond Multimedia Systems,
SoftwarePublishing,CallunaTechnology等。
城市和社会有其发展的内在机制,并非仅依赖人为因素,硅谷也不例外。硅谷取得成功的原因很多。我认为以下几个因素对硅谷的发展至关重要:
一.良好的自然条件。旧金山湾有优越的地理条件,阳光明媚,气候舒适,有“天然空调”之称。北加州原有富裕的生活质量,吸引人们来到此地生活工作。
二.活跃的社会环境。硅谷的许多人来自美国东部和西欧,他们为摆脱墨守成规的文化和官僚主义的束缚,被加州特殊机会吸引而来。正如一位风险投资家所说:“东部乃是大公司的地盘,壁垒森严,个人很难立足其间。加州则是前线,从经济、社会和组织形式来看都没有固定的模式,而且最重要的是它具真正重视个人的价值”。近年来,世界各地的不少青年人在硅谷圆了自己的创业梦。当然,也有许多人败下阵来,在硅谷倒闭的公司恐怕比成功的公司要多得多。
三.完善的基础设施。便利的交通,快捷的通讯,世界一流的斯坦福大学、加州大学伯克利分校提供有力的科技后援,优良、丰富而又具有流动性的高科技人才。这一切都营造出良好的科技和商业环境。
四.人才优势。我们发现在硅谷领导高科技企业的管理人才都是既懂得技术又擅长管理的全才。许多人既是相关领域的技术权威或创新者,同时又具有非凡的领导才能和个性魅力。只有这样高素质的人才组合才能在激烈的竞争环境中立于不败之地,而有利可图的商业环境,个人对创业的追求和对盈利的珍视,又促使许多有才能的人自立门户,形成了今日硅谷丰富多彩,万马奔腾的面貌。这就是高科技行业的迷人之处,技术变化很快,有才能的人很容易闯出自己的一席之地。
五.以科技为先导。美国高科技企业一个显著特点是在科研上投入大量资源,它们往往由某种独创性的技术起步,然后不断改进产品,扩大市场占有率。例如从70年代以来,英特尔微处理器上的晶体管数目,每隔18个月左右便增加一个倍,相当符合摩尔定律的预期。在激烈的竞争下,只有在技术上领先一步,才能立于不败之地,即使是大公司也不敢稍有怠慢。竞争的结果是技术的进步和推广,培育了市场,也使整个信息产业获得了丰厚的利润。在技术发展过程中,斯坦福等一批高校功不可没,它们不仅为企业界输送了大量科技人才,而且以其雄厚的基础研究成为技术进步的后盾,不断地将科研成果转化为社会生产力。而且企业界和高校之间交流密切,实践中的经验能很快地反馈到基础研究中,如此良性循环,促进了技术的发展。
六.发达的资本市场。美国高科技企业的创业与风险投资关系很大。苹果电脑公司1976年创办时,投资企业家马克库拉投资9万美元,借贷25万美元,占30%股份,从而推动了苹果电脑的发展,进而使革命性的个人电脑成为新兴产业。Adobe 1982年创建时得到著名风险投资公司H&Q的支持,后者获得了百倍的利润回报;Adobe公司在成长壮大后,又与H&Q合资成立新的风险投资公司,支持高科技企业的创业,也得到丰厚的回报。
上述两家公司的创业都起源于独创性的科研成果,而风险投资使成果及时转化、占领市场,并分别形成个人电脑和桌面出版这两个新兴产业。没有风险投资的参与,仅靠一人或数人的有限财力,就很难快速发展。在美国有许多专业的、高素质投资家,他们有丰富的投资经验,一项独创性的技术容易吸引到大量的资金来投资,所以在美国经常可以听到高科技人员一夜之间成为亿万富翁的事。
硅谷是我们研究高科技园区的有价值的实例。作为信息社会的雏形,高科技人才的家园,硅谷既是乐土也是苦海。高科技公司之间竞争残酷,表面上高利润的事业,其实也暗藏高风险,成败往往在一瞬之间。硅谷成功的背后,也曾付出环境污染,家庭解体、文化贫瘠以及难以克服的阶级差别等沉重代价。因此,美国人说:硅谷只有一个,或许将来也永远只有一个。硅谷人从事的信息产业和他们的行为方式,为未来社会的经济结构和文化形态提供了有益的样板。关心和支持中国高科技事业发展的人不可不知道这段历史,我们还应该始终注意其新的发展趋向,作为我们的借鉴。
物理学也被称为“自然哲学” 当代物理学大体上可以分为四个主要分支:高能物理学、天文(宇宙) 物理学、原子分子和光学物理学,以及凝聚态物理学。相对于前三个方向,可以分别用一句话来概括其中最明显的特征。高能和天文物理的研究内容非常基本,往往能够激发人们 探索 物质和时空本源的好奇心。原子分子和光学物理可以达到令人惊叹的精密程度,甚至可以控制一个电子和一个光子。这些很自然地会引起公众的兴趣。
以至于凝聚态物理学,也许大家都听说过这个名词。媒体上时常可以看到的超导研究,就是凝聚态物理的一个重要方向。但总体来说,凝聚态物理学听起来不是那么的尖端,说得直白一点,就是不够酷。高能物理是在最微小的尺度上研究时空的结构。天文宇宙学则是与此相对的一个极端,是在最广大的尺度上研究宇宙的诞生、演化,和最终的命运,比如大爆炸、黑洞、暗物质、暗能量等等。原子分子和光学物理的主题包括激光、原子钟、量子信息、冷原子等,其目标之一是实现最精准的调控。 1986年在铜氧化物系统中发现的高温超导现象,给超导研究带来了新的挑战和机遇。所示的钇钡铜氧 (YBaCuO) 超导体是一类有代表性的高温超导体。其超导临界温度可以到90 K左右,在 历史 上第一次达到了液氮温区,凝聚态物理早期的名字叫做固体物理学。因为听起来有点lou,所以更改了名字。从而提升公众知名度的角度来说,但结果却恰恰相反,大众对这个“典雅”的新名字普遍感觉不够亲切。人们一般也不了解,它其实是现代物理学中和生活联系得最为密切的那个分支。凝聚态物理的从业人数也是最多的,超过一半的物理学家认为自己是凝聚态物理学家。
电脑、手机芯片所依赖的电子工业的基础就是半导体物理。追本溯源,这是凝聚态物理的一个重要的分支。正是因为半导体物理非常成熟,进而工业化了,以至于其物理的源头反而不常被提起。固态物质是凝聚态物理的传统研究对象。原子核和原子内层电子合成离子实,排列成晶格。原子外层的电子比较活跃,经常在整个晶格中运动,不再属于某个特定的原子。这些电子数目众多,彼此之间有很强的静电排斥,它们也会被晶格振动所散射。这是一个复杂的体系,其展现出的物态,包括金属性、绝缘性、超导电性、磁性等等,其实都是宏观层面的量子行为。这些与量子物理密切相关的部分,通常被称作凝聚态物理。
当然,凝聚态物理也研究经典物理中的物态。这一部分内容经常被称作软凝聚态物理,比如高分子和蛋白质的折叠、生物膜、DNA打结、阻塞、堆积、雪崩等等。软凝聚态物理的研究和生物、化学,甚至和人类的 社会 行为都有着密切的联系。凝聚态物理的范围过于广泛,给人一种琳琅满目乃至于繁杂的感觉。正因为如此,公众反而觉得陌生。与此形成对照的是,对于基本粒子、超弦、大爆炸、宇宙学,公众耳闻目染,常常津津乐道。因此,对于凝聚态物理的研究风格和方法论,是有必要向公众和年轻的学生们做一些介绍的。
凝聚态物理的前时期发展
大家一般会觉得凝聚态物理很有用,那它是不是主要研究些应用问题?还是基础物理吗?在回答这些问题之前,我们先对凝聚态物理学的 历史 做一个简要的回顾。
凝聚态物理的源头非常古老,其实大家并不陌生。铁磁体早在公元前4-5世纪,就被古代中国人和古希腊人分别独立地发现。在19世纪后半期,大量新发现的矿物急需系统的分类,这催生了对晶体结构的空间对称性的研究。这些可以算是“电子时代”的凝聚态物理。
现代凝聚态物理以研究电子性质为核心,所以电子的发现是凝聚态物理学史的一个重要事件。1897年,汤姆孙 (J. J. Thomson) 在研究阴极射线的时候发现了电子 (阴极射线就是电子束) 。在紧接着的1900年,德鲁德 (Drude) 模型被提出。Drude把经典的麦克斯韦气体运动论应用于电子,得到了电导的Drude公式,
其中σ0是直流电导,e、m分别是电子电量、质量,n是电子密度,τ 是电子碰撞的平均自由时间。此公式至今还被广泛应用于电子输运的研究中。从某种意义上说,Drude可以算成第一个现代意义上的凝聚态物理学家。但是在他的时代,人们还不知道电子的量子属性。(硬) 凝聚态物理从根本上就是量子的。如果没有量子力学,那么固体的基本热学和电学性质都会变得无法理解。量子物理进入凝聚态物理是从对固体比热的研究开始的。经典物理的能均分定理 (equipartition theorem) 中比热是与温度无关的常数,但是实验测量的结果完全不是那么回事。在实验上发现,绝缘体的低温比热正比于温度的立方T3,而金属的低温比热则线性依赖于温度T。
绝缘体的低温比热行为来源于晶格振动,其T3的行为是晶格振动量子化的结果。这方面研究的先驱是爱因斯坦,然后由德拜(Debye) 加以改进。量子化的晶格振动是声子,满足玻色统计。金属的低温比热主要来自于电子,金属的量子理论由索末菲 (Sommerfeld) 提出,建立在电子的费米子属性之上。金属被简化成费米球,其内部的状态被填充。费米球的表面叫费米面,由于泡利不相容原理,可以被热激发的电子局限于费米面附近很窄的壳层中,其能量的宽度为kBT,而费米球深处的电子是不能被激发的。这是其比热与温度呈线性关系的来源。
为什么会有绝缘体和金属的区别?这似乎是中学里就学过的简单问题。当时的答案是绝缘体里只有束缚电子,而金属体里的是自由电子。其实这不能算是一个完整的回答。同样是电子,为什么会有束缚和自由之分呢?
此问题的圆满解决是凝聚态物理早年的一个里程碑。这其实是个量子效应,用行话说,是泡利不相容原理和能带结构共同作用的结果。
固体其实是分子的推广,二者都是由原子组成的。形象地说,分子成“键” (bond),而晶体成“带” (band) 。比如,氢分子的成键态和反键态是由两个原子的电子轨道组合而成。固体中有很多原子,其组合方式要更复杂些,但精神是一致的。从数学上看,这就是傅里叶变换,把着眼点从坐标空间变到动量空间。这就形成了一系列的整体模式,就是能量带,其中的每一个形态都由晶格动量来标记。能带的一个重要的特点是能量的分布变得不连续,出现了间隙,称为能隙。这是电子的物质波被晶格散射而产生量子干涉的结果。
当一个能带被填满了,一个弱电场不足以激发能隙下边的电子跨越能隙而到上边,这样就没有电流,就是绝缘体。在现实空间,绝缘体的图像则更加的鲜明,假设一个电子在电场的作用下试图从一个原子跳到相邻原子,但是能量相近的轨道已经被占满了,泡利不相容原理阻塞了这个过程。除非电场超级强大,可以把电子拽到相邻原子的能量更高的轨道上,这样绝缘体就被击穿了,行话叫“电致击穿” (electric breakdown)。
在真实的固体中,电子间还存在着强烈的静电库仑相互作用。我们面临的是双重因素所交织起来的困难。其一是晶格势带来的空间不均匀,其二是库仑相互作用导致的电子关联。科恩 (Kohn) 提出了密度泛函理论 (density functional theory),接着科恩和沈吕九(L. J. Sham) 发展了基于密度泛函理论的Kohn—Sham自洽方程。这个方程把上述两个困难因素做了解耦处理,用行话说是用变分法加上局域密度近似 (LDA),从而在能带论的基础上部分地计入了关联效应。这虽然是一种近似,但极大地简化了难度,对于半导体等关联体系取得了令人瞩目的成功,给了电子工业强有力的支持。这个方法也对化学有很大的影响,并于1998年获得了诺贝尔化学奖。故名“高温超导体”。和传统超导体不同,高温超导体是典型的强关联体系,也就说体系中粒子之间的相互作用能比单粒子运动的能标要大得多,可以大一个数量级左右。没有掺杂的铜氧化合物是高温超导体的母体,是反铁磁性莫特绝缘体。在掺杂空穴后,系统开始可以导电。随着掺杂的增加,反铁磁性被压制而消失,伴随着超导的出现。超导临界温度先随着空穴浓度的增加而增加;在达到一个最大值后,其随掺杂的增加而变小,最终超导消失。
高温超导的机理至今是凝聚态物理尚未解决的问题。研究者们普遍认为磁性和超导有着密切的关系,而且其超导库珀配对具有非常规对称性,即d-波对称性[5],但是领域内也存在着不可忽视的不同意见。换句话说,高温超导仍然是凝聚态物理乃至整个物理学中有待解决的杰出问题。展 望
凝聚态物理的活力也来自于它的开放性,它广泛地吸收其他领域的精华。传统上,与其关系最密切的当属高能物理。最深刻的物理在不同的能标和尺度上往往有相似的体现,表现出惊人的普适性。
凝聚态物理得益于高能物理中的量子场论方法,从而可以方便地处理大量电子的相互作用问题。反过来,凝聚态对高能物理的基本观念也有重大的促进。
现代凝聚态理论的奠基人朗道,他提出的对称性自发破缺的概念,同时也是高能物理标准模型的基石之一。P. W. Anderson在超导物理的背景下研究规范对称性的自发破缺,和希格斯 (Higgs) 在高能物理中的相应研究,异曲同工,并称为Anderson—Higgs机制。凝聚态物理处在当代量子理论研究的前沿,从主观意识上来评定对美与真相的向往和追求,充满着发现新规律与对新事物的兴趣和考究
1、 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。
近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。
这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。
公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。
16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。
近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。
16世纪,牛顿总结前人的研究成果,系统的提出了力学三大运动定律,完成了经典力学的大一统。16世纪后期创立万有引力定律,树立起了物理学发展史上一座伟大的里程碑。
之后两个世纪,是电学的大发展时期,法拉第用实验的方法,完成了电与磁的相互转化,并创造性地提出了场的概念。19世纪,麦克斯韦在法拉第研究的基础上,凭借其高超的数学功底,创立了了电磁场方程组,在数学形式上完成了电与磁的完美统一,完成了电磁学的大一统。
与此同时,热力学与光学也得到迅速发展,经典物理学逐渐趋于完善。
扩展资料:
近代物理学发展越发缓慢,主要是因为数学模型的复杂度和诠释的难度的提高造成的吧,或者换句话说,并不是物理学的发展变慢了,只是想把它简单的表述给人们变得越来越难。人们无从了解,自然就觉得是学科不发展。
早在经典物理比如经典力学和热力学,虽然数学模型也不简单但是诠释是很直观的。就是说数学符号对应的物理实际是很显而易见的。
而现代的,比如量子场论和弦论,甚至广义相对论的数学模型比经典物理要复杂的多。而且很多数学模型还不完备,这些其实都不是大问题。关键是如何诠释,如何理解量子场论中的量子场的物理实际,甚至更低级别一些,量子力学中的波函数是什么,目前虽有一些公认的解释但是很不令人满意。
而且对于物理过程的概率诠释从一方面直接从理论层面阻碍了对更基础的物理结构的研究,这也跟我们的实验观察能力的限制有关。我们不能建立超越我们观察能力的理论,或者我们可以建立任何理论但是对于超越观察能力的部分我们不能做任何研究。
综上所述,其实物理学现在的发展并不慢,只是人们的认知问题而已。
参考资料:百度百科-经典物理学
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)