1、原理
2、用途
3、优点
编辑本段1、原理
紫外吸收检测器简称紫外检测器(ultraviolet detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。 大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用最广泛的检测器。 为得到高的灵敏度,常选择被测物质能产生最大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。 紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。 光波根据光的传播频率不一样而划分的。紫外的测量范围一般为0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。
编辑本段2、用途
紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。 紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。
编辑本段3、优点
紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。 不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
1. 深紫外发光光谱技术简介
深紫外发光光谱是研究半导体材料物理性质的一种重要手段。通常所说的半导体发光是半导体中电子从高能态跃迁至低能态时,伴之以发射光子的辐射复合。我们利用深紫外激光器产生的激光或电子q发出的电子束到达样品室并入射到样品表面,样品发出的荧光信号被收集进入单色仪,该信号经单色仪分光后由探测系统探测,计算机对探测信号进行采集并形成最终的深紫外发光光谱。
2. 供测量的光谱类型及其应用范围
光致发光(PL):使用飞秒激光激发样品,波长:(1)177nm;(2)210nm-330nm可调;(3)345nm-495nm可调;(4)690nm-990nm可调。PL光谱可以实现稳态光谱和瞬态(时间分辨)光谱的测量。稳态光谱可用于研究半导体材料的基本物理性质,如晶体结构、电子态、声子结构、杂质、缺陷、激子复合机制等。瞬态光谱采用条纹相机探测,既可以得到不同时刻的时间分辨光谱,也可以得到某一波长处的荧光衰退曲线,时间分辨率为2ps。可以用来研究半导体材料载流子动力学性质。
阴极荧光(CL):使用电子束激发样品,最大能量30keV。可用于表征宽禁带半导体材料性质。波长扫描范围:170nm-800nm。
3、深紫外发光光谱测试设备介绍:
1. PL光谱
技术参数与能力:
波长:690nm-990nm,345nm-495nm和210nm-330nm三个波段内可调,最小激光波长可达177nm
波长扫描范围:170nm-800nm
温度范围:8K-350K
时间分辨率(瞬态光谱):2ps
狭缝、步长及激光功率视具体情况而定
2. CL光谱
技术参数与能力:
电子束能量:最高可达30keV
波长扫描范围:170nm-800nm
温度范围:8K-350K
狭缝和步长视具体情况而定
-------------米格实验室
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)