如何理解光的反射,透射和吸收?

如何理解光的反射,透射和吸收?,第1张

光的反射、透射和吸收

首先,光在界面的反射和折射是光与物质极化和电子相互作用的结果,才有介电常数和折射率这一说。然后,要分清界面透过率和整体透过率。界面透过率小,反射率就大。通过界面的光,吸收越大,整体透过率就越小。

金属无带隙,电子处于费米面,为自由电子,所以不存在电子跃迁吸收光这个说法。金属对于光的吸收来自于自由电子振动发热。物质对于光的反射和折射是与其电导率相关的,具体表现为复数的介电常数,所以除非是完全绝缘体,否则必然会出现复介电常数,具体可参考电动力学麦克斯韦方程组。金属无带隙,电导率大,最终导致界面反射大,界面透过小,参考光学。另一方面,频率越低,反射率越大。所以金属大多呈白色,最不济也是黄色。有些如紫铜等,那些是因为杂质和其中的金属氧化物造成的。透过金属表面的光,却因为电子的自由振荡全部转化为热,其穿透深度一般小于100纳米,所以整体透过率为零,金属完全不透光。

半导体不同,因为其带隙大,电导率小,无自由电子,所以其表面反射率小,表面透过率大。半导体对于光的吸收来自于电子跃迁,高频光能量大,更有利于电子跃迁,低频光无法激发电子跃迁,基本透过。所以透过其表面的光,高频的在内部被吸收,低频的透过。

光与非晶态半导体作用所产生的光吸收包括本征吸收、 激子吸收、 自由载流子吸收、 声子吸收及杂质吸收等, 由于吸收方式不同, 它们分别发生在不同的光谱波段。

本征吸收

当用能量足够大的光子照射某种非品态半导体时, 可其价带中电子吸收光子后跃迁到导带, 形成电子 一空穴对,种带问跃迁吸收是本征吸收。由于非晶态半导体不具有长有序, 简约波矢 k 不再是电子态的好量子数 , 故电子的跃迁受准动量守恒的限制。

激子吸收

实验发现, 在本征吸收的长波边缘有一系列吸收线, 它们对应激子吸收线。这些吸收线不像本征吸收那样伴有光电导, 说明受激电子并未进入导带形成 自由电子, 而是与留下的空穴束缚在一起形成电子一空穴对, 即激子。这种光吸收叫做激子吸收。理论极限上, 可以区分两种不同类型的激子幢,即弗仑克尔( F r e n k d) 激子和万尼尔激子。在弗仑克尔激子情况下, 电子和空穴形成一个点偶极矩, 电子 一空穴间距离和晶格常数相近。弗仑克尔激子常出现在绝缘体和分子 晶体中, 并伴随着强烈的电子一声子相互作用。在万尼尔激子情况下电子和空穴间相互作用较弱, 电子和空穴相距远大于晶格常数, 电子沿束缚或非束缚的类氢轨道绕空穴转动, 通常在非晶态半导体中碰到的下正是这种激子。激子的能态与氢原子的相似, 由一系列能级组成, 位于导带带尾附近。激子可以在非晶半导体中一处运动到另一处, 很易演变成亚稳态D与 D 一 对。

自由载流子吸收

自由载流子吸收是重要的和最普通的一种带内电子跃迁 光吸收过程。当入射光子能量不够高, 不足以引起带间跃迁或激子吸收时, 可以发生自由载流子在同一能带中的跃迁吸 收, 称做自由载流子吸收。自由载流子吸收光谱的特点在于 吸收曲线无明显结构和随波长的单调增加, 当其吸收谱位于红外和微波波段在一定范围内变化时, 某些材料对同一光子能量的吸收系数与其直流电导率成正比, 说明这种吸收是自由载流子吸收引起的。

声子吸收

晶态半导体在红外波具有由于光子与晶格振动相互作用引起的吸收区域, 被晶格吸收的光子能量转变成为晶格原子的振动能。对非晶态半导体, 在红外波段也存在着类似的光吸收。这是一种入射光子与非晶半导体的网格的相互作用,引起网格振动模式的光吸收。以 a —S i : H为例, 材料中存在着 S i l l、 S i H 2 、 S i H 3 及( s i H) 等各种组态, 其红外吸收谱就是这 些组态振动能量间的跃迁所引起的吸收光谱。

半导体吸收光:在光照射下,价带电子吸收光而获得能量,并从价带跃迁到导带(产生电子-空穴对)。光电池就是利用吸收光来产生电动势的。

半导体发光:当有电流通过发光二极管时,即产生非平衡载流子(非平衡的导带电子和价带空穴),然后非平衡的导带电子跃迁到价带与空穴复合、并发光。这就是pn发光管的发光机理。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7416737.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-05
下一篇 2023-04-05

发表评论

登录后才能评论

评论列表(0条)

保存