由于掺杂浓度大,耗尽层单位面积内正负离子多,所以只需要相对较窄的耗尽层就能建立起足够强的内电场来阻止多子的扩散运动。
可理解为加上正向电压,正向电压会与内部接触电场相抵消,这也是正向导通的的原理,所以浓度高,建立起的耗尽层宽度也就窄了。
具体说明:电场强度=掺杂浓度*宽度(e=nd*w),电势差等于=电场强度*宽度,所以电势差等于掺杂浓度*宽度的平方,产生的电势差一样时,高掺杂的掺杂浓度大,所以耗尽层宽度窄。
扩展资料
半导体应用策略
半导体制冷技术已经广泛应用在医药领域中,工业领域中,即便是日常生活中也得以应用,所以,该技术是有非常要的发展前景的。
例如,将导体制冷技术用于现代的各种制冷设备中,诸如冰箱、空调等等,都可以配置电子冷却器。半导体冰箱就是使用了半导体制冷技术。在具体的应用中,可以根据不同客户的需要使用,以更好地满足客户的要求。
不同数量的半导体制冷芯片,在连接的过程中可以根据需要采用并联的方式或串联的方式,放置在合适的位置就可以发挥作用。二十世纪50年代,前苏联开发了一种小型模型冰箱,只有10升的容量,冰箱的体积非常小,使用便利。
参考资料
百度百科--半导体
这是因为在耗尽层近似及杂质完全电离的性狂下,空间电荷由电离施主和电离受主组成。势垒区靠近n区一侧的电荷密度完全由施主浓度所决定,靠近p区一侧的电荷密度完全由受主浓度所决定。对突变结来说,n区有均匀施主杂质浓度,p区有均匀受主杂质浓度。因整个报导体满足电中性条件,势垒区内电荷总量相等,即:n区均匀施主杂质浓度Xn区空间电荷区的宽度=p区均匀受主杂质浓度Xp区空间电荷区的宽度
所以掺杂浓度越高,空间电荷区即耗尽层的越窄。
具体推导参阅刘恩科半导体物理学pn结那一章的突变结的势垒电容。
耗尽层就是在PN结附近,其中的载流子因扩散而耗尽,只留下不能移动的正负离子的区域,又称空间电荷区。在 P 型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的 。N 型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区 。P 型半导体一边的空间电荷是负离子 ,N 型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散 ,达到平衡。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)