半导体热电材料的大致有如下几种:
(1)粉末冶金法。宜于大批量生产,材料的机械强度高且成分均匀,易于制成各种形状的温差电元件,其缺点是破坏了结晶方位,材料密度较小,从而不能获得高的热电性能。
(2)熔体结晶法。设备 *** 作简单,严格控制可获得单晶或由几个大晶粒组成的晶体,材料性能较好。缺点是不宜大批量生产,材料的机械强度差,切割的材料耗损较大。
(3)连续浇铸法。宜于大批量生产。缺点是设备费用大,且不易控制。
(4)区域熔炼法。可获得高质量的单晶材料,杂质分布均匀。缺点是价格昂贵,不宜大批量生产。
(5)单晶拉制法。可获得高质量的单晶,但单晶炉的结构比较复杂。缺点是不适宜大批量生产。
(6)外延法制取薄膜。该法目前用于Bi2Te3薄膜生长。
半导体热敏电阻的工作原理:按温度特性热敏电阻可分为两类,随温度上升电阻增加的为正温度系数热敏电阻,反之为负温度系数热敏电阻。
⑴ 正温度系数热敏电阻的工作原理
此种热敏电阻以钛酸钡(BaTio3)为基本材料,再掺入适量的稀土元素,利用陶瓷工艺高温烧结尔成。纯钛酸钡是一种绝缘材料,但掺入适量的稀土元素如镧(La)和铌(Nb)等以后,变成了半导体材料,被称半导体化钛酸钡。它是一种多晶体材料,晶粒之间存在着晶粒界面,对于导电电子而言,晶粒间界面相当于一个位垒。当温度低时,由于半导体化钛酸钡内电场的作用,导电电子可以很容易越过位垒,所以电阻值较小;当温度升高到居里点温度(即临界温度,此元件的‘温度控制点’ 一般钛酸钡的居里点为120℃)时,内电场受到破坏,不能帮助导电电子越过位垒,所以表现为电阻值的急剧增加。因为这种元件具有未达居里点前电阻随温度变化非常缓慢,具有恒温、调温和自动控温的功能,只发热,不发红,无明火,不易燃烧,电压交、直流3~440V均可,使用寿命长,非常适用于电动机等电器装置的过热探测。
⑵ 负温度系数热敏电阻的工作原理
负温度系数热敏电阻是以氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物为主要原料,采用陶瓷工艺制造而成。这些金属氧化物材料都具有半导体性质,完全类似于锗、硅晶体材料,体内的载流子(电子和空穴)数目少,电阻较高;温度升高,体内载流子数目增加,自然电阻值降低。负温度系数热敏电阻类型很多,使用区分低温(-60~300℃)、中温(300~600℃)、高温(>600℃)三种,有灵敏度高、稳定性好、响应快、寿命长、价格低等优点,广泛应用于需要定点测温的温度自动控制电路,如冰箱、空调、温室等的温控系统。
热敏电阻与简单的放大电路结合,就可检测千分之一度的温度变化,所以和电子仪表组成测温计,能完成高精度的温度测量。普通用途热敏电阻工作温度为-55℃~+315℃,特殊低温热敏电阻的工作温度低于-55℃,可达-273℃。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)