因为在一定温度下,半导体的电子空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子空穴对,载流子密度增加,电阻率减小。
半导体的五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。
扩展资料
掺杂对半导体结构的影响:
1、掺杂之后的半导体能带会有所改变。依照掺杂物的不同,本质半导体的能隙之间会出现不同的能阶。施主原子会在靠近传导带的地方产生一个新的能阶,而受主原子则是在靠近价带的地方产生新的能阶。
2、掺杂物依照其带给被掺杂材料的电荷正负被区分为施主与受主。施主原子带来的价电子大多会与被掺杂的材料原子产生共价键,进而被束缚。
3、掺杂物对于能带结构的另一个重大影响是改变了费米能阶的位置。在热平衡的状态下费米能阶依然会保持定值,这个特性会引出很多其他有用的电特性。
参考资料来源:百度百科-半导体
百度百科-半导体电阻率
纯金属的导电性一般是随着温度的降低而增大(因为晶格散射减小,迁移率增大的缘故)。本征半导体随着温度的降低,本征载流子浓度随着温度的降低而指数式减小,所以导电性降低。
具体情况较复杂,详见“http://blog.163.com/xmx028@126/”中的有关说明。
1、首先常温下导电性能介于导体与绝缘体之间的材料,温度的改变对半导体的导电能力、极限电压、极限电流以及开关特性等都有很大的影响。2、其次一个芯片往往包含了数百万甚至上千万个晶体管以及其他元器件,每一点小小的偏差的累加可能造成半导体外部特性的巨大影响。
3、最后如果温度过低,往往会造成芯片在额定工作电压下无法打开其内部的半导体开关,导致其不能正常工作。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)