芯片产能缺货潮,谁将是最大受益者?

芯片产能缺货潮,谁将是最大受益者?,第1张

年底在各个半导体圈子里听到最多的,就是关于产能紧缺的话题,近来的缺货潮愈演愈烈,已经呈现出不可收拾的势头。

产业界想的是如何尽快解决缺货的问题,而作为投资者,我思考的角度是:

芯片产能缺货,谁才会是最大的受益者?

从通常的定义出发, 半导体的产业链分为五个环节,即:设计、制造、封测、设备、材料。

其中 设计行业 是缺货的受害者,这里略过不提。

那么,缺货主要体现在哪个环节中呢?首要是 制造(代工) ,其次是 封测

封测 其实也是制造的一部分,国内已经涌现出 华天 科技 、通富微电、长电 科技 、晶方 科技 等封测巨头。全球Top10的封测企业中,中国大陆厂商就占了3家,这三家分别是江苏长电、通富微电和天水华天,市场份额合计占全球25.1%。

往年11月中下旬之后,封测市场就进入传统淡季,但今年情况反常,主要是由于原本积压在IC设计厂或IDM厂的晶圆库存,开始大量释出至封测厂进行封装制程生产;车用电子市况第四季明显回升,但芯片库存早已见底,车用芯片急单大举释出;5G智能型手机芯片含量较4G手机增长将近五成,需要更多的封装产能支援,封测行业的景气度目前处于高位,且会持续18个月之久。

但是封测环节本身的技术含量没有代工高,封测行业的产能相对代工制造来说,是比较容易扩充的,且设备不存在被美国限制的可能性,因此我认为 封测产能的紧缺只是暂时的。

随着封测厂不断扩产,以及近些年国内众多新建的封测厂陆续投产,新增产能或将快速“补位”,产能紧缺的情况在得到缓解之后,涨价的“红利”在消化之后,未来的封测业必将迎来新一轮的洗牌大战。

对于封测行业相应的上市公司来说,我只能说短期受益,但是长期来说看平。

材料 环节涨价明显,但是并没有发生缺货的现象。

拿封测原材料为例,一是银价的涨幅过大,从4月份的3元/克到最高峰涨到了5元多/克,将近翻倍,而银浆是半导体封装必须要用到的一种材料,其主要成分是纳米银粉。

二是,铜价也基本上涨了百分之二三十了,目前到了今年最高峰,从以前的4万多元/吨涨到了最近的5万多元 /吨。另外包括基本的引线框架、键合丝、载板等,都已呈现一定的涨幅。

至于 设备 领域,目前国产替代仍然处于起步的阶段,国内的中微、北方华创等只是间接传导受益,影响不大。

很明显,这次缺货潮的核心瓶颈集中在代工制造这一环节。

过去几年,国内投资了海量资金到制造线上,也新扩张了很多12吋工厂,那为什么产能还这么紧张?

某著名芯片咨询机构给出的解释是: 虚假产能过剩,有效产能不足

仅仅统计PR文章,政府宣发的投资、开工、扩产可支撑的产能是天文数字,但是雷声大、雨点小。很多政府资金投下去,都落在建设的前期,很多如武汉弘芯一般不了了之,最终地方的付出真正转化为有效产能的不多。

成熟规模量产厂的产能,中芯国际和华虹半导体依然是中流砥柱,作为中国集成电路制造的中坚力量,二者分别贡献了超过34%、18%的已有产能。

那么如果对比中芯国际和华虹半导体,哪家公司更为受益呢?

具体深入看产能的形势,我们会发现, 一方面成熟工艺供应严重不足 ,8吋产线全部都面临紧张局面,尤其是55nm和180nm工艺非常吃紧。 而另一方面,中芯国际的14nm和28nm先进工艺,因为华为无法下单而空置 ,至今无法获得国内设计公司有效下单的补充。

我想这也正是梁孟松被迫下台、中芯国际放弃激进工艺路线的商业原因。

答案很明显,华虹半导体受益更明显。 在我国半导体新增产能统计来看,华虹贡献了35%的新增产能,无锡12吋7厂将会贡献主要的力量。

华虹半导体为国内领先的晶圆代工厂,营收规模境内仅次于中芯国际。公司于2005年成立,2014年在香港主板上市。在Trendforce公布的2020Q3行业营收排名中,华虹半导体位列全球第九、中国大陆第二。公司三座8英寸晶圆厂的产能将持续满载(总产能17.8万片/月),无锡12英寸晶圆厂目前已经有包括90纳米嵌入式闪存、65纳米逻辑与射频工艺平台、分立器件三个平台进入量产阶段,预计在2020年底月产量有望达到2万片。

除一期项目以外,华虹12英寸厂还规划了二期、三期项目,远期总计投资100亿美元,远期目标将达到约20万片/月12英寸产能,中信证券预计,这相当于再造2.5个华虹。

华虹半导体由于工艺没有超过28nm,因此不会受到美国的制裁,可以说是因祸得福。华虹8英寸晶圆厂产能利用率自2020Q3达到102%,12英寸晶圆厂处于产能爬坡中,后续产能扩张进度有望超预期,应该说处于 历史 上最好的时期。

在芯片设计及晶圆代工向本土转移的大趋势下,华虹半导体虽然体量不如中芯国际,但是中芯国际正面临技术方向调整和美国制裁的问题,华虹成熟工艺布局合理,反而盈利状况更好。从华虹半导体最近两个月的股价表现来看,明显是机构在用脚投票。

还有一个因素, 华虹半导体明年有回到科创板的可能 ,参考中芯国际去年二次IPO的套利模式,似乎有比较确定的盈利机会。

随着绿色低碳战略的不断推进,提升能源利用效率和能源转换效率已经成为各行各业的共识,如何利用现代化新技术建成可循环的高效、高可靠性的能源网络,无疑是当前各国重点关注的问题。

值此背景下,以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体成为市场聚焦的新赛道。根据Yole预测数据, 2025年全球以半绝缘型衬底制备的GaN器件市场规模将达到20亿美元,2019-2025年复合年均增长率高达12%! 其中,军工和通信基站设备是GaN器件主要的应用市场,2025年市场规模分别为11.1亿美元和7.31亿美元

全球以导电型碳化硅衬底制备的SiC器件市场规模到2025年将达到25.62亿美元,2019- 2025年复合年均增长率高达30%! 其中,新能源汽车和光伏及储能是SiC器件主要的应用市场, 2025年市场规模分别为15.53亿美元和3.14亿美元。

本文中,我们将针对第三代半导体产业多个方面的话题,与国内外该领域知名半导体厂商进行探讨解析。

20世纪50年代以来,以硅(Si)、锗(Ge)为代的第一代半导体材料的出现,取代了笨重的电子管,让以集成电路为核心的微电子工业的发展和整个IT产业的飞跃。人们最常用的CPU、GPU等产品,都离不开第一代半导体材料的功劳。可以说是由第一代半导体材料奠定了微电子产业的基础。

然而由于硅材料的带隙较窄、电子迁移率和击穿电场较低等原因,硅材料在光电子领域和高频高功率器件方面的应用受到诸多限制。因此,以砷化镓(GaAs)为代表的第二代半导体材料开始崭露头角,使半导体材料的应用进入光电子领域,尤其是在红外激光器和高亮度的红光二极管方面。与此同时,4G通信设备因为市场需求增量暴涨,也意味着第二代半导体材料为信息产业打下了坚实基础。

在第二代半导体材料的基础上,人们希望半导体元器件具备耐高压、耐高温、大功率、抗辐射、导电性能更强、工作速度更快、工作损耗更低特性,第三代半导体材料也正是基于这些特性而诞生。

笔者注意到,对于第三代半导体产业各家半导体大厂的看法也重点集中在 “高效”、“降耗”、“突破极限” 等核心关键词上。

安森美中国汽车OEM技术负责人吴桐博士 告诉笔者: “第三代半导体优异的材料特性可以突破硅基器件的应用极限,同时带来更好的性能,这也是未来功率半导体最主流的方向。” 他表示随着第三代半导体技术的普及,传统成熟的行业设计都会有突破点和优化的空间。

英飞凌科技电源与传感系统事业部大中华区应用市场总监程文涛 则从能源角度谈到,到2025年,全球可再生能源发电量有望超过燃煤发电量,将推动第三代半导体器件的用量迅速增长。 在用电端,由于数据中心、5G通信等场景用电量巨大,节电降耗的重要性凸显,也将成为率先采用第三代半导体器件做大功率转换的应用领域。

第三代半导体材料区别于前两代半导体材料最大的区别就在于带隙的不同。 第一代半导体材料属于间接带隙,窄带隙第二代半导体材料属于直接带隙,同样也是窄带隙二第三代半导体材料则是全组分直接带隙,宽禁带。

和前两代半导体材料相比,更宽的禁带宽度允许材料在更高的温度、更强的电压与更快的开关频率下运行。

随着碳化硅、氮化镓等具有宽禁带特性(Eg>2.3eV)的新兴半导体材料相继出现,世界各国陆续布局、产业化进程快速崛起。具体来看:

与硅相比, 碳化硅拥有更为优越的电气特性 : 

1.耐高压 :击穿电场强度大,是硅的10倍,用碳化硅制备器件可以极大地 提高耐压容量、工作频率和电流密度,并大大降低器件的导通损耗

2.耐高温 :半导体器件在较高的温度下,会产生载流子的本征激发现象,造成器件失效。禁带宽度越大,器件的极限工作温度越高。碳化硅的禁带接近硅的3倍,可以保证碳化硅器件在高温条件下工作的可靠性。硅器件的极限工作温度一般不能超过300℃,而碳化硅器件的极限工作温度可以达到600℃以上。同时,碳化硅的热导率比硅更高,高热导率有助于碳化硅器件的散热,在同样的输出功率下保持更低的温度,碳化硅器件也因此对散热的设计要求更低,有助于实现设备的小型化

3.高频性能 :碳化硅的饱和电子漂移速率是硅的2倍,这决定了碳化硅器件可以实现更高的工作频率和更高的功率密度。基于这些优良的特性,碳化硅衬底的使用极限性能优于硅衬底,可以满足高温、高压、高频、大功率等条件下的应用需求,已应用于射频器件及功率器件。

氮化镓则具有宽禁带、高电子漂移速度、高热导率、耐高电压、耐高温、抗腐蚀、耐辐照等突出优点。 尤其是在光电子器件领域,氮化镓器件作为LED照明光源已广泛应用,还可制备成氮化镓基激光器在微波射频器件方面,氮化镓器件可用于有源相控阵雷达、无线电通信、基站、卫星等军事 或者民用领域氮化镓也可用于功率器件,其比传统器件具有更低的电源损耗。

半导体行业有个说法: “一代材料,一代技术,一代产业” ,在第三代半导体产业规模化出现之前,也还存在着不少亟待解决的技术难题。

第三代半导体全产业链十分复杂,包括衬底→外延→设计→制造→封装。 其中,衬底是所有半导体芯片的底层材料,起到物理支撑、导热、导电等作用外延是在衬底材料上生长出新的半导体晶层,这些外延层是制造半导体芯片的重要原料,影响器件的基本性能设计包括器件设计和集成电路设计,其中器件设计包括半导体器件的结构、材料,与外延相关性很大制造需要通过光刻、薄膜沉积、刻蚀等复杂工艺流程在外延片上制作出设计好的器件结构和电路封装是指将制造好的晶圆切割成裸芯片。

前两个环节衬底和外延生长正是第三代半导体生产工艺及其难点所在。我们重点挑选碳化硅、氮化镓两种典型的第三代半导体材料来看,它们的生产制备到底还面临哪些问题。

从碳化硅来看,还需要“降低衬底生长缺陷,以及提高工艺效率” 。首先碳化硅单晶制备目前最常用的是物理气相输运法(PVT)或籽晶的升华法,而碳化硅单晶在形成最终的短圆柱状之前,还需要通过机械加工整形、切片、研磨、抛光等化学机械抛光和清洗等工艺才能成为衬底材料。

这一机械、化学制造过程存在着加工困难、制造效率低、制造成本高等问题。此外,如果再加上考虑单晶加工的效率和成本问题,那还能够保障晶片具备良好的几何形貌,如总厚度变化、翘曲度、变形,而且晶片表面质量(粗糙度、划伤等)是否过关等,这都是碳化硅衬底制备中的巨大挑战。

此外,碳化硅材料是目前仅次于金刚石硬度的材料,材料的机械加工主要以金刚石磨料为基础切割线、切割刀具、磨削砂轮等工具。这些工具的制备难度大,使用寿命短,加工成本高,为了延长工具寿命、提高加工质量,往往会采用微量或极低速进给量,这就牺牲了碳化硅材料制备的整体生产效率。

对于氮化镓来说,则更看重“衬底与外延材料需匹配”的难题 。由于氮化镓在高温生长时“氮”的离解压很高,很难得到大尺寸的氮化镓单晶材料,当前大多数商业器件是基于异质外延的,比如蓝宝石、AlN、SiC和Si材料衬底来替代氮化镓器件的衬底。

但问题是这些异质衬底材料和氮化镓之间的晶格失配和热失配非常大,晶格常数差异会导致氮化镓衬底和外延层界面处的高密度位错缺陷,严重的话还会导致位错穿透影响外延层的晶体质量。这也就是为什么氮化镓更看重衬底与外延材料需匹配的难点。

在落地到利用第三代半导体材料去解决具体问题时,程文涛告诉OFweek维科网·电子工程, 英飞凌的碳化硅器件所采用的沟槽式结构解决了大多数功率开关器件的可靠性问题。

比如现在大多数功率开关器件产品采用的是平面结构,难以在开关的效率上和长期可靠性上得到平衡。采用平面结构,如果要让器件的效率提高,给它加点电,就能导通得非常彻底,那么它的门级就需要做得非常薄,这个很薄的门级结构,在长期运行的时候,或者在大批量运用的时候,就容易产生可靠性的问题。

如果要把它的门级做的相对比较厚,就没办法充分利用沟道的导通性能。而采用沟槽式的做法就能够很好地解决这两个问题。

吴桐博士则从产业化的角度提出, 第三代半导体技术的难点在于有关设计技术和量产能力的协调,以及对长期可靠性的保障。尤其是量产的良率,更需要持续性的优化,降低成本,提升可靠性。

观察当前半导体市场可以发现,占据市场九成以上的份额的主流产品依然是硅基芯片。

但近些年来,“摩尔定律面临失效危机”的声音不绝于耳,随着芯片设计越来越先进,芯片制造工艺不断接近物理极限和工程极限,芯片性能提升也逐步放缓,且成本不断上升。

业界也因此不断发出质疑,未来芯片的发展极限到底在哪,一旦硅基芯片达到极限点,又该从哪个方向下手寻求芯片效能的提升呢?笔者通过采访发现,国内外厂商在面对这一问题时,虽然都表达出第三代半导体产业未来值得期待,但也齐齐提到在这背后还需要重点解决的成本问题。

“目前硅基半导体从架构上、从可靠性、从性能的提升等方面,基本上已经接近了物理极限。第三代半导体将接棒硅基半导体,持续降低导通损耗,在能源转换的领域作出贡献,” 程文涛也为笔者描述了当前市场上的一种现象:可能会存在一些定价接近硅基半导体的第三代半导体器件,但并不代表它的成本就接近硅基半导体。因为那是一种商业行为,就是通过低定价来催生这个市场。

以目前的工艺来讲,第三代半导体的成本还是远高于硅基半导体 ,程文涛表示:“至少在可见的将来,第三代半导体不会完全取代第一代半导体。因为从性价比的角度来说,在非常宽的应用范围中,硅基半导体目前依然是不二之选。第三代半导体目前在商业化上的瓶颈就是成本很高,虽然在迅速下降,但依然远高于硅基半导体。”

作为中国碳化硅功率器件产业化的倡导者之一,泰科天润同样也表示对第三代半导体产业发展的看好。

虽然碳化硅单价目前比硅高不少,但从系统整体的角度来看,可以节约电感电容以及散热片。如果是大功率电源系统整体角度看成本未必更高,同时还能更好地提升效率。 这也是为什么现阶段虽然单器件碳化硅比硅贵,依然不少领域客户已经批量使用了。

从器件的角度来看,碳化硅从四寸过度到六寸,未来往八寸甚至十二寸发展,碳化硅器件的成本也将大幅度下降。据泰科天润介绍,公司新的碳化硅六寸线于去年就已经实现批量出货,为客户提供更高性价比的产品,有些产品实现20-30%的降价幅度。除此之外,泰科天润耗时1年多成功开发了碳化硅减薄工艺,在Vf水平不变的情况下,可以缩小芯片面积,进一步为客户提供性价比更高的产品。

泰科天润还告诉笔者:“这两年随着国外友商的缺货或涨价,比如一些高压硅器件,这些领域已经出现碳化硅取代硅的现象。随着碳化硅晶圆6寸产线生产技术的成熟,8寸晶圆的发展,碳化硅器件有望与硅基器件达到相同的价格水平。”

吴桐博士认为, 目前来看在不同的细分市场,第三代半导体跟硅基器件是一个很好的互补,也是价钱vs性能的一个平衡。随着第三代半导体的成熟以及成本的降低,最终会慢慢取代硅基产品成为主流方案。

那么对于企业而言,该如何发挥第三代半导体的综合优势呢?吴桐博士表示,于安森美而言,首先是要垂直整合,保证稳定的供应链,可长期规划的产能布局以及达到客观的投资回报率其次是在技术研发上继续发力,比如Rsp等参数,相比行业水准,实现用更小的半导体面积实现相同功能,这样单个器件成本得以优化第三是持续地提升FE/BE良率,等效的降低成本第四是与行业大客户共同开发定义新产品,保证竞争力以及稳定的供需关系最后也是重要的一点,要帮助行业共同成长,蛋糕做大,产能做强,才能使得单价有进一步下降的空间。

第三代半导体产业究竟掀起了多大的风口?根据《2020“新基建”风口下第三代半导体应用发展与投资价值白皮书》内容:2019年我国第三代半导体市场规模为94.15亿元,预计2019-2022年将保持85%以上平均增长速度,到2022年市场规模将达到623.42亿元。

其中,第三代半导体衬底市场规模从7.86亿元增长至15.21亿元,年复合增速为24.61%,半导体器件市场规模从86.29亿元增长至608.21亿元,年复合增速为91.73%。

得益于第三代半导体材料的优良特性,它在 光电子、电力电子、通讯射频 等领域尤为适用。具体来看:

光电子器件 包括发光二极管、激光器、探测器、光子集成电路等,多用于5G通信领域,场景包括半导体照明、智能照明、光纤通信、光无线通信、激光显示、高密度存储、光复印打印、紫外预警等

电力电子器件 包括碳化硅器件、氮化镓器件,多用于新能源领域,场景包括消费电子、新能源汽车、工业、UPS、光伏逆变器等

微波射频器件 包括HEMT(高电子迁移率晶体管)、MMIC(单片微波集成电路)等,同样也是用在5G通信领域,不过场景则更加高端,包括通讯基站及终端、卫星通讯、军用雷达等。

现阶段,欧美日韩等国第三代半导体企业已形成规模化优势,占据全球市场绝大多数市场份额。我国高度重视第三代半导体发展,在研发、产业化方面出台了一系列支持政策。国家科技部、工信部等先后开展了“战略性第三代半导体材料项目部署”等十余个专项,大力支持第三代半导体技术和产业发展。

早在2014年,工信部发布的《国家集成电路产业发展推进纲要》提出设立国家产业投资基金,重点支持集成电路等产业发展,促进工业转型升级,同时鼓励社会各类风险投资和股权投资基金进入集成电路领域在去年全国人大发布《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中,进一步强调培育先进制造业集群,推动集成电路、航空航天等产业创新发展。瞄准人工智能、量子信息、集成电路等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。

具体来看当前主要应用领域的发展情况:

1.新能源汽车

新能源汽车行业是未来市场空间巨大的新兴市场,全球范围内新能源车的普及趋势明朗。随着电动汽车的发展,对功率半导体器件需求量日益增加,成为功率半导体器件新的经济增长点。得益于碳化硅功率器件的高可靠性及高效率特性,在车载级的电机驱动器、OBC及DC/DC部分,碳化硅器件的使用已经比较普遍。对于非车载充电桩产品, 由于成本的原因,目前使用比例还相对较低,但部分厂商已开始利用碳化硅器件的优势,通过降低冷却等系统的整体成本找到了市场。

2.光伏

光伏逆变器曾普遍采用硅器件,经过40多年的发展,转换效率和功率密度等已接近理论极限。碳化硅器件具有低损耗、高开关频率、高适用性、降低系统散热要求等优点,将在光伏新能源领域得到广泛应用。例如,在住宅和商业设施光伏系统中的组串逆变器里,碳化硅器件在系统级层面带来成本和效能的好处。

3.轨道交通

未来轨道交通对电力电子装置,比如牵引变流器、电力电子电压器等提出了更高的要求。采用碳化硅功率器件可以大幅度提高这些装置的功率密度和工作效率,有助于明显减轻轨道交通的载重系统。目前,受限于碳化硅功率器件的电流容量,碳化硅混合模块将首先开始替代部分硅IGBT模块。未来随着碳化硅器件容量的提升,全碳化硅模块将在轨道交通领域发挥更大的作用。

4.智能电网

目前碳化硅器件已经在中低压配电网开始了应用。未来更高电压、更大容量、更低损耗的柔性输变电将对万伏级以上的碳化硅功率器件具有重大需求。碳化硅功率器件在智能电网的主要应用包括高压直流输电换流阀、柔性直流输电换流阀、灵活交流输电装置、高压直流断路器、电力电子变压器等装置中。

第三代半导体自从在2021年被列入十四五规划后,相关概念持续升温,迅速成为超级风口,投资热度高居不下。

时常会听到业内说法称,第三代半导体国内外都是同一起跑线出发,目前大家差距相对不大,整个产业发展仍处于爆发前的“抢跑”阶段,对国内而言第三代半导体材料更是有望成为半导体产业的“突围先锋”,但事实真的是这样吗?

从起步时间来看,欧日美厂商率先积累专利布局,比如 英飞凌一直走在碳化硅技术的最前沿,从30年前(1992年)开始包含碳化硅二极管在内的功率半导体的研发,在2001年发布了世界上第一款商业化碳化硅功率二极管 ,此后至今英飞凌不断推出了各种性能优异的碳化硅功率器件。除了产品本身,英飞凌在2018年收购了Siltectra,致力于通过冷切割技术优化工艺流程,大幅提高对碳化硅原材料的利用率,有效降低碳化硅的成本。

安森美也是第三代半导体产业布局中的佼佼者,据笔者了解, 安森美通过收购上游碳化硅供应企业GTAT实现了产业链的垂直整合,确保产能和质量的稳定。同时借助安森美多年的技术积累以及几年前收购Fairchild半导体基因带来的技术补充,安森美的碳化硅技术已经进入第三代,综合性能在业界处于领先地位 。目前已成为世界上少数提供从衬底到模块的端到端碳化硅方案供应商,包括碳化硅球生长、衬底、外延、器件制造、同类最佳的集成模块和分立封装方案。

具体到技术上, 北京大学教授、宽禁带半导体研究中心主任沈波 也曾提出,国内第三代半导体和国际上差距比较大,其中很重要的领域之一是碳化硅功率电子芯片。这一块国际上已经完成了多次迭代,虽然8英寸技术还没投入量产,但是6英寸已经是主流技术,二极管已经发展到了第五代,三极管也发展到了第三代,IGBT也已进入产业导入前期。

另外车规级的碳化硅MOSFET模块在意法半导体率先通过以后,包括罗姆、英飞凌、科锐等国际巨头也已通过认证,国际上车规级的碳化硅芯片正逐渐走向规模化生产和应用。反观国内,目前真正量产的主要还是碳化硅二极管,工业级MOSFET模块估计到明年才能实现规模量产,车规级碳化硅模块要等待更长时间才能量产。

泰科天润也直言,国内该领域仍处于后发追赶阶段:器件方面,从二极管的角度, 国产碳化硅二极管基本上水平和国外差距不大,但是碳化硅MOSFET国内外差距还是有至少1-2代的差距 可靠性方面,国外碳化硅产品市场应用推广较早,积累了更加丰富的应用经验,对产品可靠性的认知,定义以及关联解决可靠性的方式都走得更前一些,国内厂家也在推广市场的过程中逐步积累相关经验产业链方面,国外厂家针对碳化硅的材料优势,相关匹配的产业链都做了对应的优化设计,使之能更加契合的体现碳化硅的材料优势。

OFweek维科网·电子工获悉,泰科天润在湖南新建的碳化硅6寸晶圆产线,第一期60000片/六寸片/年。此产线已经于去年实现批量出货,2022年始至4月底已经接到上亿元销售订单。 作为国内最早从事碳化硅芯片生产研发的公司,泰科天润积累了10余年的生产经验,针对特定领域可以结合自身的研发,生产和工艺一体化,快速为客户开发痛点新品 ,例如公司全球首创的史上最小650V1A SOD123,专门针对解决自举驱动电路已经替换高压小电流Si FRD解决反向恢复的痛点问题而设计。

虽然说IDM方面,我国在碳化硅器件设计方面有所欠缺,少有厂商涉及于此,但后发追赶者也不在少数。

就拿碳化硅产业来看,单晶衬底方面国内已经开发出了6英寸导电性碳化硅衬底和高纯半绝缘碳化硅衬底。 山东天岳、天科合达、河北同光、中科节能 均已完成6英寸衬底的研发,中电科装备研制出6英寸半绝缘衬底。

此外,在模块、器件制造环节我国也涌现了大批优秀的企业,包括 三安集成、海威华芯、泰科天润、中车时代、世纪金光、芯光润泽、深圳基本、国扬电子、士兰微、扬杰科技、瞻芯电子、天津中环、江苏华功、大连芯冠、聚力成半导体 等等。

OFweek维科网·电子工程认为,随着我国对新型基础建设的布局展开和“双碳”目标的提出,碳化硅和氮化稼等第三代半导体的作用也愈发凸显。

上有国家支持政策,下有新能源汽车、5G通信等旺盛市场需求, 我国第三代半导体产业也开始由“导入期”向“成长期”过渡,初步形成从材料、器件到应用的全产业链。但美中不足在于整体技术水平还落后世界顶尖水平好几年,因此在材料、晶圆、封装及应用等环节的核心关键技术和可靠性、一致性等工程化应用问题上还需进一步完善优化。

当前,全球正处于新一轮科技和产业革命的关键期,第三代半导体产业作为新一代电子信息技术中的重点组成部分,为能源革命带来了深刻的改变。

在此背景下,OFweek维科网·电子工程作为深耕电子产业领域的资深媒体,对全球电子产业高度关注,紧跟产业发展步伐。为了更好地促进电子工程师之间技术交流,推动国内电子行业技术升级,我们继续联袂数十家电子行业企业技术专家,推出面向电子工程师技术人员的专场在线会议  「OFweek 2022 (第二期)工程师系列在线大会」  。

本期在线会议将于6月22日在OFweek官方直播平台举办,将邀请国内外知名电子企业技术专家,聚焦半导体领域展开技术交流,为各位观众带来技术讲解、案例分享和方案展示。

在半导体芯片制造中,“光刻”和“刻蚀”是两个紧密相连的步骤,它们也是非常关键的步骤。 “光刻”等同于通过投影在晶片上“绘制”电路图。此时,电路图实际上并未绘制在晶圆上,而是绘制在晶圆表面的光刻胶上。光刻胶的表面层是光致抗蚀剂,光敏材料将在曝光后降解。 “蚀刻”是实际上沿着光致抗蚀剂的表面显影以在晶片上雕刻电路图的图案。

半导体芯片设备蚀刻机在芯片制造领域处于国内替代的最前沿。有三个核心环节,分别是薄膜沉积,光刻和刻蚀。刻蚀是通过化学或物理方法选择性地蚀刻或剥离基板或表面覆盖膜的表面以形成由光刻法限定的电路图案的过程。

其中,光刻是最复杂,最关键,最昂贵和最耗时的环节。刻蚀的成本仅次于光刻,其重要性正在提高。薄膜沉积也是必不可少的重要过程。为了实现大型集成电路的分层结构,需要重复沉积-蚀刻-沉积的过程。

随着国际高端量产芯片从14nm到10nm到7nm,5nm甚至更小芯片的发展,当前市场上普遍使用的浸没式光刻机受到光波长的限制,密钥尺寸无法满足要求,因此必须采用多个模板过程。 使用蚀刻工艺来达到较小的尺寸,使得刻蚀技术及相关设备的重要性进一步提高。

刻蚀机是芯片制造和微处理的最重要设备之一。它使用等离子蚀刻技术,并使用活性化学物质在硅晶圆上蚀刻微电路。 7nm工艺相当于人发直径的千分之一,这是人在大型生产线上可以制造的最小集成电路布线间距,接近微观加工的极限。尽管我国的半导体设备行业与国际巨头之间仍然存在差距,但我们可以看到,无论是受环境,下游需求还是研发能力的驱动,国内半导体设备行业都发生了质的飞跃。

中微公司主要从事高端半导体芯片设备,包括半导体芯片集成电路制造,先进封装,LED生产,MEMS制造以及其他具有微工艺的高端设备。该 公司的等离子蚀刻设备已专门用于国际一线客户的集成电路和65nm至14nm,7nm和5nm先进封装的加工和制造。其中,7nm / 5nm蚀刻技术是国内稀缺性的技术。 该公司的MOCVD设备已在行业领先客户的生产线上投入批量生产,已成为基于GaN的LED的全球领先制造商。

公司的客户包括国内外的主流晶圆厂和LED制造商。随着公司产品性能的不断提高,客户的认可度和丰富度也在不断提高。公司生产的蚀刻设备的主要客户包括 全球代工领导者台积电,大陆代工领导者中芯国际,联电,海力士,长江存储等,光电厂商华灿光电、璨扬光电、三安光电 等。随着中微股份在半导体芯片设备领域的不断发展,公司在IC制造,IC封装和测试以及LED行业中的渗透率不断提高,并且越来越多国际厂商已成为公司的主要客户。公司开发的5nm蚀刻机已通过台积电的验证。 Prismo A7设备在全球基于氮化镓的LED MOCVD市场中处于领先地位,成功超过了传统的领先企业Veeco和Aixtron。

中微公司的主要业务是蚀刻设备和MOCVD设备的生产和销售,并处于国内半导体设备市场的前列。与公司有可比性的公司包括领先的国际蚀刻设备LAM和MOCVD设备领先的Veeco,以及国内两级半导体设备公司北方华创和精测电子。 在蚀刻设备市场上,中微公司与LAM之间存在很大差距,在MOCVD设备领域,中微公司具有与Veeco相近的实力。从国内来看,中微公司和精测电子处于同一水平,仅次于北华创,主要是因为公司是半导体芯片设备的后起之秀。总体而言,中微公司处于国内半导体芯片设备的第一梯队。

2020年前三季度,营业收入为14.8亿元,同比增长21.3%,归属于母公司所有者的净利润为2.8亿元,同比大幅增长105.3%。扣非净利润-4547.3万元,同比下降138.1%。其中,前三季度非经常性损益为2.44亿元。剔除政府补贴,确认的公允价值变动损益为1.55亿元,这主要是由于公司对中芯国际A股股权价值变动的投资以及LED芯片的供过于求。随着价格持续下降,下游企业面临毛利率和库存的双重压力。

A股上市公司半导体芯片刻蚀设备黑马股中微公司自2020年7月见顶后保持中期下降趋势,主力筹码相对较少控盘不足,据大数据统计,主力筹码约为21%,主力控盘比率约为31%; 趋势研判与多空研判方面,可以参考15日与45日均线的排列关系,中短期以15日均线作为多空参考,中期以45日均线作为多空参考。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7631764.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-08
下一篇 2023-04-08

发表评论

登录后才能评论

评论列表(0条)

保存