Along with being a "girl's best friend," diamonds also have remarkable1properties that could make them ideal semiconductors3. This is welcome news for electronicssemiconductors are needed to meet the rising demand for more efficient electronics that deliver and convert power. The thirst for electronics is unlikely to cease and almost every appliance or device requires a suite4of electronics that transfer, convert and control power. Now, researchers have taken an important step toward that technology with a new way to dope single crystals of diamonds, a crucial process for building electronic devices.
"We need the devices to manipulate the power in the way that we want," said Zhengqiang (Jack) Ma, an electrical and computer engineering professor at the University of Wisconsin-Madison. He and his colleagues describe their new method in the Journal of Applied5 Physics, from AIP Publishing.
4。氮化物半导体的导电控制4.1。蓝色发现的p -型导电交界的n氮化镓GaN和实现的P -发光二极管没有成功,许多团体试图制造p型氮化镓但。随着氮化镓晶体质量控制成功的,我们就可以开始工作,在p型掺杂。使用的LT - AlN缓冲层,密度氮化镓残余捐助也大幅下降如上所述。但在上尽管一再努力锌掺杂,它不可能产生p型氮化镓。 1987年,我们发现,发光强度锌有关的大量增加时,高品质的锌掺杂的GaN层与成长的LT - AlN缓冲了电子束照射在阴极发光(CL)的测量[21]。我们认为这种现象(称为电子束的影响)[21]可能是密切相关的传导与活化锌,因此与受体PTYPE的。但晶体并没有显示p型传导。与此同时,在1988年,我们注意到,可能是受体镁锌浅比,因为它的电是]大22比锌[。 1989年,我们成功地在镁掺杂高品质氮化镓使用镁掺杂Cp2Mg或MCP2Mg作为一个同时保持AlN缓冲层技术的高品质结晶使用的LT - [23]。然后镁掺杂GaN样品进行照射用电子束在掺杂样品一样的锌。我们发现效果大大提高电子束蓝色发光这些Mgdoped氮化镓样品(部门)以及低电阻率的样品是p型氮化镓[24]。随即,我们实现了世界上第一个氮化镓的p - n结蓝/紫外发光二极管令人鼓舞的I - V特性于1989年[24],如图所示研究。 5。我们实现了p型氮化铝镓在1991年[25]和p型GaInN在1995年[26]以相同的方式。 1992年,PTYPE的氮化镓也产生Mgdoped氮化镓铝热退火成长与缓冲层,中村等的LT - GaN的。 [27]。后来,p型氮化镓紫外得到[28]或电磁波辐射[29,30] 400集成电路在高温下。为了实现p型氮化物,就必须激活[31镁受体释放氢气,32]。但是,我们首先要大幅度降低钝化受体的剩余供氢之前解决相关的问题。amorphous semiconductor非晶形半导体, 无定形半导体
binary semiconductor
二元(化合物)半导体
compensated semiconductor
补偿半导体
complementary symmetry metal oxide semiconductor
互补对称金属氧化物半导体
compound semiconductor
化合物半导体
covalent semiconductor
共价半导体
defective semiconductor
不良半导体, 有缺陷半导体
degeneracy semiconductor
简并半导体
degenerate semiconductor
简并半导体
deplete semiconductor
耗尽型半导体, 贫乏型 半导体
depleting-layer semiconductor
耗尽层半导体
direct band-gap semiconductor
直接跃迁半导体
direct-gap semiconductor
直接带隙半导体
element semiconductor
单质半导体, 元素半导体
excess semiconductor
过剩半导体
fused semiconductor
熔凝半导体
gallium arsenide semiconductor
呻化镓半导体
gas sensory semiconductor
气敏半导体
indirect gap semiconductor
间接能隙半导体
inhomoge-neoussemiconductor
不均匀半导体
integratedsemiconductor
集成半导体
intermetallic semiconductor
金属间半导体
intrinsic semiconductor
本征半导体, 纯半导体, 无杂质半导体
liquid semiconductor
易变半导体
magnetic semiconductor
磁性半导体
many-valley semiconductor
(有多谷形能带的)多谷型半导体
metal-oxide semiconductor
金属氧化物半导体
mixed semiconductor
混合半导体
monoatomic semiconductor
单质半导体
non-polar semiconductor
非极性半导体
oxidation type semiconductor
氧化型半导体
oxide semiconductor
氧化物半导体
photosensitive semiconductor
光敏半导体
piezoelectric semiconductor
压电半导体
plastic semiconductor
半导体塑料
polar semiconductor
极性半导体
polymer semiconductor
聚合半导体
power semiconductor
功率半导体器件
proper semiconductor
固有半导体, 本征半导体
pure semiconductor
纯半导体, 本征半导体
reduction type semiconductor
还原型半导体
ternary semiconductor
三元化合物半导体
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)