在高掺杂浓度的情况下,因势垒区宽度很小,反向电压较大时,破坏了势垒区内共价键结构,使价电子脱离共价键束缚,产生电子-空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。如果掺杂浓度较低,势垒区宽度较宽,不容易产生齐纳击穿。
齐纳击穿一般发生在掺杂浓度较高的PN结中。这是因为掺杂浓度较高的PN结,空间电荷区的电荷密度很大,宽度很窄,只要加很小的反向电压就能够建立起很强的电场,发生齐纳击穿。
扩展资料
从PN结的形成原理可以看出,要想让PN结导通形成电流,必须消除其空间电荷区的内部电场的阻力。很显然,给它加一个反方向的更大的电场,即P区接外加电源的正极,N区结负极,就可以抵消其内部自建电场,使载流子可以继续运动,从而形成线性的正向电流。
而外加反向电压则相当于内建电场的阻力更大,PN结不能导通,仅有极微弱的反向电流(由少数载流子的漂移运动形成,因少子数量有限,电流饱和)。
当反向电压增大至某一数值时,因少子的数量和能量都增大,会碰撞破坏内部的共价键,使原来被束缚的电子和空穴被释放出来,不断增大电流,最终PN结将被击穿(变为导体)损坏,反向电流急剧增大。
参考资料来源:百度百科-PN结
简单的说:掺杂浓度过高,杂质原子过于靠近,从而相互结合,这就减少了参与到PN结形成的杂质原子数量,从而造成PN结变窄。以下信息供参考理解用:晶体是由许多原子在靠近时,通过电子轨道相互重叠并“成键”后组成。此时,原子中的“电子状态”将由“能级状态”转变为“能带状态”——即能级展宽为能带。类似地,当掺杂浓度很高、以致相邻“杂质原子”的电子轨道发生交叠时,杂质能级即展宽为杂质能带。电子在杂质能带中同样具有一定的导电性;不过因为杂质原子轨道的交叠不会很大,则杂质能带的宽度较小,从而导电作用不大(一般只是在低温下有贡献)。当半导体的掺杂浓度很高时,大量的杂质中心的电势将使得导带和价带出现能带尾;如果掺杂浓度高到使能带尾与杂质能带相连时,就将造成半导体能隙变窄。能级解释:微观粒子系统处于各稳定的能量状态时所具有的能量值。能带解释:原子在形成分子时,原子轨道构成具有分立能级的分子轨道。由原子轨道所构成的分子轨道的数量非常之大,以至于可以将所形成的分子轨道的能级看成是准连续的,即形成了能带。①Si和GaAs半导体的Fermi能级与掺杂浓度的关系见图1 。
对于n型半导体,因为掺入的施主越多,导带电子的浓度就越大,相应地少数载流子——空穴的浓度就越小,则Fermi能级也就越靠近导带底。对于p型半导体亦然,掺杂浓度越高,Fermi能级就越靠近价带顶。当掺杂浓度高到一定程度时,甚至Fermi能级还有可能进入到导带或者价带内部。
②Si和GaAs半导体的Fermi能级与温度的关系亦见图2 。
因为当温度升高到一定程度时,不管是n型半导体还是p型半导体,它们都将转变成为(高温)本征半导体。从而,半导体中Fermi能级也将是随着温度的升高而逐渐趋近于禁带中央。即随着温度的升高,n型半导体的EF将降低,p型半导体的EF将上升。
此外,在图1和图2中也示出了半导体的禁带宽度(Eg=EC-EV)随着温度的变化状况。Si和GaAs等半导体的禁带宽度具有负的温度系数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)