从航母到理想L9都使用了碳化硅材料,是因为该材料有如下优势。
一、碳化硅是优秀的第三代半导体材料性能优良的碳化硅,代表着先进的生产力,第三代半导体材料是由碳化硅、氮化镓等构成的一种宽禁带半导体材料,它的击穿电场高、热导率高、电子饱和率高、抗辐射能力强。
因而可以在高温、高频率环境下工作,并可在低功耗条件下实现高功率工作。
二、推动新能源汽车变革早在2018年,特斯拉MODEL 3在主逆变器中就率先安装了24个由意法半导体生产的碳化硅MOSFET功率模块,这也是该种材料在民用方面较早的大规模应用。
以新能源汽车为例,根据Cree公司的计算,如果将纯电动汽车的电源元件转换为碳化硅,则可以提高电能转换效率,提高电能利用效率,降低无效热耗,从而降低整体能耗5%-10%。
2019年,碳化硅功率装置的市场规模达到5.41亿美元,2025年有望达到25.62亿,年均复合增长率30%左右。随着下游应用如电动车等的不断发展,导电碳化硅基板的市场将会迅速发展。
在应用方面,未来5年,高速发展的新能源汽车将是碳化硅行业的一个长期发展动力。2025-2030年,由于充电桩设施完善,光伏技术成熟,碳化硅产业有望成为第二、第三个驱动力。
三、应用市场十分广泛碳化硅不仅仅可以应用在新能源汽车,在高铁列车、航空航天、无线通讯等行业中都有广泛的应用前景,但碳化硅的市场潜力还没有完全开发出来,从产业链的中游来看,它的成长空间很大,将会是推动上游材料发展的一大推动力。
硅(Si)是研究较早的半导体材料,是第一代半导体的代表。半个多世纪以来,硅半导体技术的长足发展极大地促进了电力和电子技术的进步。尤其到了20世纪70年代,集成电路制造技术的成熟,奠定了硅在整个半导体行业中的领军地位。目前,除了极少数微波加热电源还使用真空电子管之外,几乎所有的电力和电子器件都使用Si材料来制造。尤其在集成电路中,99%以上用的都是Si半导体材料。然而随着科学的进步和半导体技术的发展,Si由于材料本身的特点在某些应用领域的局限性逐渐表现出来。例如,其带隙较窄(~1.12eV)、载流子迁移率和击穿电场较低等,限制了其在光电子领域以及高频、高功率器件方面的应用L1。 第三代半导体也称为宽带隙半导体(禁带宽度超过2.0eV),如金刚石、碳化硅(SiC)、Ⅲ一V族氮化物、Ⅱ一Ⅵ族Zn基化合物及其固溶体等。其中以金刚石、SiC、氮化镓(GaN)和氧化锌(ZnO)为第三代半导体的代表材料。宽带隙使第三代半导体具有许多共同的性能特点,包括高熔点、高临界击穿电场、高热导率、小的介电常数、大的激子束缚能、大的压电系数以及较强的极化效应等。 SiC电学性能 SiC具有较高的临界击穿电场、高热导率和饱和电子迁移率等特点,适合于制造大功率、高温、高频和抗辐射的半导体器件。SiC热导率是si的3倍,SiC材料优良的散热性有助于提高器件的功率密度和集成度。SiC材料形态决定其禁带宽度的大小,但均大于si和GaAs的禁带宽度,降低SiC器件的泄漏电流,加上SiC的耐高温特性,使得SiC器件在高温电子工作领域优势明显。因其具有高硬度和高化学稳定性等特点,使得SiC材料能胜任恶劣的工作环境。一维SiC纳米材料具有较高的禁带宽度,可由间接带隙半导体转变为直接带隙半导体,高强高韧等特点;适用于制造在恶劣环境下使用的电子器件。在半导体领域的应用
碳化硅一维纳米材料由于自身的微观形貌和晶体结构使其具备更多独特的优异性能和更加广泛的应用前景,被普遍认为有望成为第三代宽带隙半导体材料的重要组成单元。
第三代半导体材料即宽禁带半导体材料,又称高温半导体材料,主要包括碳化硅、氮化镓、氮化铝、氧化锌、金刚石等。这类材料具有宽的禁带宽度、高的热导率、高的击穿电场、高的抗辐射能力、高的电子饱和速率等特点,适用于高温、高频、抗辐射及大功率器件的制作。第三代半导体材料凭借着其优异的特性,未来应用前景十分广阔。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)