问题描述:
我要写一篇课程结课文章,题目是“非晶态半导体的电学性质”,谁能提供点资料啊?!
解析:
以非晶态半导体材料为主体制成的固态电子器件。非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。1975年,英国W.G.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。非晶硅薄膜场效应管阵列可用作大面积液晶平面显示屏的寻址开关。利用某些硫系非晶态半导体材料的结构转变来记录和存储光电信息的器件已应用于计算机或控制系统中。利用非晶态薄膜的电荷存储和光电导特性可制成用于静态图像光电转换的静电复印机感光体和用于动态图像光电转换的电视摄像管的靶面。
具有半导体性质的非晶态材料。非晶态半导体是半导体的一个重要部分。50年代B.T.科洛米耶茨等人开始了对硫系玻璃的研究,当时很少有人注意,直到1968年S.R.奥弗申斯基关于用硫系薄膜制作开关器件的专利发表以后,才引起人们对非晶态半导体的兴趣。1975年W.E.斯皮尔等人在硅烷辉光放电分解制备的非晶硅中实现了掺杂效应,使控制电导和制造PN结成为可能,从而为非晶硅材料的应用开辟了广阔的前景。在理论方面,P.W.安德森和莫脱,N.F.建立了非晶态半导体的电子理论,并因而荣获1977年的诺贝尔物理学奖。目前无论在理论方面,还是在应用方面,非晶态半导体的研究正在很快地发展着。
分类 目前主要的非晶态半导体有两大类。
硫系玻璃。含硫族元素的非晶态半导体。例如As-Se、As-S,通常的制备方法是熔体冷却或汽相沉积。
四面体键非晶态半导体。如非晶Si、Ge、GaAs等,此类材料的非晶态不能用熔体冷却的办法来获得,只能用薄膜淀积的办法(如蒸发、溅射、辉光放电或化学汽相淀积等),只要衬底温度足够低,淀积的薄膜就是非晶态结构。四面体键非晶态半导体材料的性质,与制备的工艺方法和工艺条件密切相关。图1 不同方法制备非晶硅的光吸收系数 给出了不同制备工艺的非晶硅光吸收系数谱,其中a、b制备工艺是硅烷辉光放电分解,衬底温度分别为500K和300K,c制备工艺是溅射,d制备工艺为蒸发。非晶硅的导电性质和光电导性质也与制备工艺密切相关。其实,硅烷辉光放电法制备的非晶硅中,含有大量H,有时又称为非晶的硅氢合金;不同工艺条件,氢含量不同,直接影响到材料的性质。与此相反,硫系玻璃的性质与制备方法关系不大。图2 汽相淀积溅射薄膜和熔体急冷成块体AsSeTe的光吸收系数谱 给出了一个典型的实例,用熔体冷却和溅射的办法制备的AsSeTe样品,它们的光吸收系数谱具有相同的曲线。
非晶态半导体的电子结构 非晶态与晶态半导体具有类似的基本能带结构,也有导带、价带和禁带(见固体的能带)。材料的基本能带结构主要取决于原子附近的状况,可以用化学键模型作定性的解释。以四面体键的非晶Ge、Si为例,Ge、Si中四个价电子经sp杂化,近邻原子的价电子之间形成共价键,其成键态对应于价带;反键态对应于导带。无论是Ge、Si的晶态还是非晶态,基本结合方式是相同的,只是在非晶态中键角和键长有一定程度的畸变,因而它们的基本能带结构是相类似的。然而,非晶态半导体中的电子态与晶态比较也有着本质的区别。晶态半导体的结构是周期有序的,或者说具有平移对称性,电子波函数是布洛赫函数,波矢是与平移对称性相联系的量子数,非晶态半导体不存在有周期性, 不再是好的量子数。晶态半导体中电子的运动是比较自由的,电子运动的平均自由程远大于原子间距;非晶态半导体中结构缺陷的畸变使得电子的平均自由程大大减小,当平均自由程接近原子间距的数量级时,在晶态半导体中建立起来的电子漂移运动的概念就变得没有意义了。非晶态半导体能带边态密度的变化不像晶态那样陡,而是拖有不同程度的带尾(如图3 非晶态半导体的态密度与能量的关系 所示)。非晶态半导体能带中的电子态分为两类:一类称为扩展态,另一类为局域态。处在扩展态的每个电子,为整个固体所共有,可以在固体整个尺度内找到;它在外场中运动类似于晶体中的电子;处在局域态的每个电子基本局限在某一区域,它的状态波函数只能在围绕某一点的一个不大尺度内显著不为零,它们需要靠声子的协助,进行跳跃式导电。在一个能带中,带中心部分为扩展态,带尾部分为局域态,它们之间有一分界处,如图4 非晶态半导体的扩展态、局域态和迁移率边 中的和,这个分界处称为迁移率边。1960年莫脱首先提出了迁移率边的概念。如果把迁移率看成是电子态能量的函数,莫脱认为在分界处和存在有迁移率的突变。局域态中的电子是跳跃式导电的,依靠与点阵振动交换能量,从一个局域态跳到另一个局域态,因而当温度趋向0K时,局域态电子迁移率趋于零。扩展态中电子导电类似于晶体中的电子,当趋于0K时,迁移率趋向有限值。莫脱进一步认为迁移率边对应于电子平均自由程接近于原子间距的情况,并定义这种情况下的电导率为最小金属化电导率。然而,目前围绕著迁移率边和最小金属化电导率仍有争论。
缺陷 非晶态半导体与晶态相比较,其中存在大量的缺陷。这些缺陷在禁带之中引入一系列局域能级,它们对非晶态半导体的电学和光学性质有着重要的影响。四面体键非晶态半导体和硫系玻璃,这两类非晶态半导体的缺陷有着显著的差别。
非晶硅中的缺陷主要是空位、微空洞。硅原子外层有四个价电子,正常情况应与近邻的四个硅原子形成四个共价键。存在有空位和微空洞使得有些硅原子周围四个近邻原子不足,而产生一些悬挂键,在中性悬挂键上有一个未成键的电子。悬挂键还有两种可能的带电状态:释放未成键的电子成为正电中心,这是施主态;接受第二个电子成为负电中心,这是受主态。它们对应的能级在禁带之中,分别称为施主和受主能级。因为受主态表示悬挂键上有两个电子占据的情况,两个电子间的库仑排斥作用,使得受主能级位置高于施主能级,称为正相关能。因此在一般情况下,悬挂键保持只有一个电子占据的中性状态,在实验中观察到悬挂键上未配对电子的自旋共振。1975年斯皮尔等人利用硅烷辉光放电的方法,首先实现非晶硅的掺杂效应,就是因为用这种办法制备的非晶硅中含有大量的氢,氢与悬挂键结合大大减少了缺陷态的数目。这些缺陷同时是有效的复合中心。为了提高非平衡载流子的寿命,也必须降低缺陷态密度。因此,控制非晶硅中的缺陷,成为目前材料制备中的关键问题之一。
硫系玻璃中缺陷的形式不是简单的悬挂键,而是“换价对”。最初,人们发现硫系玻璃与非晶硅不同,观察不到缺陷态上电子的自旋共振,针对这表面上的反常现象,莫脱等人根据安德森的负相关能的设想,提出了MDS模型。当缺陷态上占据两个电子时,会引起点阵的畸变,若由于畸变降低的能量超过电子间库仑排斥作用能,则表现出有负的相关能,这就意味着受主能级位于施主能级之下。用 D、D、D 分别代表缺陷上不占有、占有一个、占有两个电子的状态,负相关能意味着:
2D —→ D+D
是放热的。因而缺陷主要以D、D形式存在,不存在未配对电子,所以没有电子的自旋共振。不少人对D、D、D缺陷的结构作了分析。以非晶态硒为例,硒有六个价电子,可以形成两个共价键,通常呈链状结构,另外有两个未成键的 p电子称为孤对电子。在链的端点处相当于有一个中性悬挂键,这个悬挂键很可能发生畸变,与邻近的孤对电子成键并放出一个电子(形成D),放出的电子与另一悬挂键结合成一对孤对电子(形成D),如图 5 硫系玻璃的换价对 所示。因此又称这种D、D为换价对。由于库仑吸引作用,使得D、D通常是成对地紧密靠在一起,形成紧密换价对。硫系玻璃中成键方式只要有很小变化就可以形成一组紧密换价对,如图6 换价对的自增强效应 所示,它只需很小的能量,有自增强效应,因而这种缺陷的浓度通常是很高的。利用换价对模型可以解释硫属非晶态半导体的光致发光光谱、光致电子自旋共振等一系列实验现象。
应用 非晶态半导体在技术领域中的应用存在着很大的潜力,非晶硫早已广泛应用在复印技术中,由S.R.奥夫辛斯基首创的 As-Te-Ge-Si系玻璃半导体制作的电可改写主读存储器已有商品生产,利用光脉冲使碲微晶薄膜玻璃化这种性质制作的光存储器正在研制之中。对于非晶硅的应用目前研究最多的是太阳能电池。非晶硅比晶体硅制备工艺简单,易于做成大面积,非晶硅对于太阳光的吸收效率高,器件只需大约1微米厚的薄膜材料,因此,可望做成一种廉价的太阳能电池,现已受到能源专家的重视。最近已有人试验把非晶硅场效应晶体管用于液晶显示和集成电路。
作者 | 海怪
来源 | 脑极体(ID:unity007)
意法半导体、英飞凌、恩智浦三家半导体企业先后从其母公司独立或重组之后,直到今天,一直是撑起欧洲半导体产业面子的“三巨头”。
之所以被称为“三巨头”,是因为自1987年以来,三家几乎从未跌出全球半导体企业20强,虽然排名有调换,但都没掉队。当然也再没有新兴的欧洲半导体企业进入这个头部榜单。
如今,在全球半导体市场中,这三巨头主要选择了工业和 汽车 等B端芯片市场,而避开了竞争激烈的移动终端及电脑等消费级芯片市场。
这就让芯片产业之外的人很少有机会听到三巨头的名声,也自然很少了解这三巨头在全球芯片市场所扮演的角色,以及三家当下的竞争格局和未来可能的发展前景。
那么,三巨头之间有哪些纠葛和关联?各自有哪些优势?顺着这些问题我们接着讨论下去。
三巨头的并购“排位赛”
由于三巨头将市场都定位在B端芯片市场,三家各自的技术和产品自然有重叠,因此不可避免会出现激烈的竞争。而在近几年三巨头的发展过程中,大规模并购其他半导体企业和技术公司,成为能够快速赶超对手的“常规”手段。
在2018年,曾传出“英飞凌试图收购意法半导体”的消息,最后可能因为法国政府的阻挠而告吹。甚至早在2007年,还有“意法半导体要收购英飞凌”的传闻。可见三巨头相互之间觊觎对方已久。
而三巨头的关系中,英飞凌和恩智浦的竞争最为激烈,双方都在 汽车 半导体领域深耕多年,且排名接近。2015年,恩智浦以118亿美元的价格,收购了美国的飞思卡尔半导体(Freescale Semiconductor),成为当年的天价收购案。完成此次收购后,恩智浦成功进入全球半导体厂商前十的行列,成为全球最大的车用半导体制造商,并且成为车用半导体解决方案与通用微型控制器(MCU)的市场龙头。
经此一战,英飞凌虽然在 汽车 半导体市场略占下风,但也没有停止并购扩张的脚步。为巩固其在功率半导体的领先地位,英飞凌在2015年率先以30亿美元现金并购美国国际整流器公司;又在去年4月,宣布以100亿美元的价格完成对美国赛普拉斯半导体公司的收购。
赛普拉斯半导体的产品,包括微控制器、连接组件、软件系统以及高性能存储器等,与英飞凌当先的功率半导体、 汽车 微控制器、传感器以及安全解决方案,形成了高度的优势互补,双方将在ADAS/AD、物联网和5G移动基础设施等高增长应用领域,提供更先进的解决方案。
简单来说,英飞凌的目的仍然是要加强 汽车 半导体产品的实力,试图超越恩智浦的 汽车 半导体业务。此外,英飞凌在MCU、电源管理和传感器芯片方面超过或接近意法半导体。
去年几乎同时,恩智浦又以17.6亿美元收购美国美满电子(Marvell)的无线连接业务,主要产品线是Marvell的Wi-Fi和蓝牙等连接产品。通过这一收购,恩智浦可以更好补强其在工业和 汽车 领域的无线通信实力。
相比之下,过去几年意法半导体在并购市场的动作较少,但也并非没有。2016年8月,意法半导体宣布收购奥地利微电子公司(AMS)的NFC和RFID reader的所有资产,获得相关的所有专利、技术、产品以及业务,以强化其在安全微控制器解决方案的实力,在移动设备、穿戴式、金融、身份认证、工业化、自动化以及物联网等领域的发展提供技术支持。
在2019年的TOP15半导体市场排名中,来自欧洲的三家企业只能排在12-14位。恩智浦收购飞思卡尔的红利已经消失。而英飞凌收购赛普拉斯之后,两家营收加起来,会使得英飞凌大幅提升排名进到前十名当中。
从半导体产品形态来看,英飞凌、意法半导体和恩智浦,都是模拟芯片或模数混合芯片企业。从近几年的产业趋势来看,模拟芯片产业的集中度不断提高,而且模拟芯片企业的并购重组主要发生在美国和欧洲之间。从恩智浦和英飞凌收购的案例中,我们可以看到其对模拟和模数混合芯片厂商的并购,而且标的几乎全部来自美国。
一方面说明美国模拟芯片整体的数量和实力都很强,一方面也能看出全球模拟芯片企业发展进入一个相对稳定发展的阶段,如果想要打破平衡,取得快速发展,并购重组和强强联合就成为一个直接有效的手段。
不过值得注意的是,美国和欧洲直接模拟芯片企业的这种“内部消化”,正在进一步拉大欧美和亚洲之间在模拟芯片产业上的优势差距。
三巨头的守旧与拓新
为什么三巨头想要突破增长瓶颈,就必须依靠巨额收购来实现呢?
这实际上要跟模拟芯片产业的特点有关。与数字芯片要求快速更新迭代(摩尔定律)不同,模拟芯片产品使用周期较长,价格相对较低,其使用时间通常在10年以上,产品价格也较低。寻求高可靠性与低失真低功耗,核心在于电路设计,模拟芯片设计工艺特别依赖人工经验积累、研发周期长。
一旦某家企业在某类模拟芯片上建立其研发优势,那么其他竞争对手就很难在短时间内模仿或者超过,同时也因为下游客户对模拟芯片超高稳定性要求,一旦某些厂商建立其产品优势,其他竞争者也难以撼动其供应市场。所以,模拟芯片的产品与行业特点导致模拟芯片厂商存在寡头竞争特点。
德州仪器、亚德诺、意法半导体、英飞凌、恩智浦都是长期稳居全球TOP10的模拟芯片巨头,并且近几年,集中度还在进一步上升。近日,亚德诺高价完成美信的收购,甚至于有机会挑战第一名德州仪器的位置,而英飞凌对赛普拉斯的收购,也能让其排名大幅上升。
从产品线来看,三巨头都是老牌的IDM制造商,都拥有非常齐全的产品线,并且更加注重产品线工艺的稳步改进。
当然,恩智浦也想过拓展其他业务。2007年,恩智浦曾收购SiliconLabs蜂窝通信业务,发力移动业务市场,以及数字电视、机顶盒等家庭应用半导体市场,但短暂的出圈尝试不够成功。
因此,2007年起恩智浦很快将无线电话SoC业务、无线业务和家庭业务部门予以出售或剥离,并重新集中到飞利浦时代就确立的优势领域—— 汽车 电子和安全识别业务。2009年,恩智浦开始主要发力HPMS(高性能混合信号)产品,到2019年,包括 汽车 电子、安全识别相关业务的HPMS部门的营收占比超过了95%,产品线大幅度集中。
另外,恩智浦一直在大力推广以UWB、NFC等为代表的射频芯片业务。去年收购Marvell的无线连接业务正是致力于这一方向的表现。
英飞凌更重视其王牌业务板块——功率半导体产品。2016年,英飞凌尝试收购从美国Cree手中收购其Wolfspeed Power &RF部门(不过被美国CFIUS否决),其目的也是为了集中资源,加强其功率半导体业务。英飞凌拥有 汽车 电子、工业功率控制、电源管理及多元化市场、智能卡与安全等四大事业部。
(意法半导体2017Q2~2018Q2三大业务线营收及营业利润率)
相对于英飞凌和恩智浦,意法半导体在传感器业务上更加突出,特别是其MEMS技术,竞争力很强,也正是依托该优势技术,使得该公司在消费类电子、 汽车 ,以及工业传感器应用方面都有较强的竞争力。另外,意外半导体在 汽车 和分立器件、模拟器件以及微控制器和数字IC产品都有相当比例的市场表现。
早在十年以前,欧洲半导体产业就做出了自己的选择,那就是不在移动终端及PC市场寻求突破,而是专注于车用半导体和工业半导体两个细分市场。这一选择既有延续传统优势的考虑,又有对电动 汽车 及物联网这些新兴市场趋势的判断。
欧洲国家本身有良好的 汽车 工业和制造业基础,而欧洲半导体三巨头又在车用和工业半导体领域深耕多年,具备完整的设计、制造和封测的IDM体系,使得竞争对手短期内难以超越,这也是三巨头能够“守旧”的底气。
随着PC市场和移动终端市场红利期的结束,紧随5G网络普及而来的正是万物互联的物联网时代,智能电动 汽车 、无人驾驶、车联网、物联网等全新红利市场的到来,让欧洲半导体产业迎来新一轮增长周期。这是三巨头能够“拓新”的机遇。
从“守旧”中“拓新”,正是欧洲半导体产业能够继续赢得未来市场的不二法门。
三巨头的“中国红利”
由于欧洲半导体产业一直以来,无论是排名还是营收,其相对于美国和亚洲厂商来说,波动都非常小,但是未来又有一个稳定的增长预期。因此即便是三巨头如此大的体量,也成为美国半导体巨头试图并购的目标。
(虚线为2016年高通收购恩智浦流产后去除的390亿美元)
2016年,美国高通尝试以380亿美元收购恩智浦,成为当年金额最高的收购计划。当时恩智浦表示出浓厚的兴趣,但大幅提高了报价至440亿美元。高通同意了这一价格,并且收购案先后获得了美国、欧盟、韩国、日本、俄罗斯等全球八个主要监管部门同意。但在中国监管部门的反垄断审核期内,高通在其收购期内宣布放弃这些收购计划,并为此向恩智浦支付了20亿美元的“分手费”。
高通大力收购恩智浦的原因不难理解,那就是在5G发展可能受阻的情况下,获得恩智浦在 汽车 、物联网、网络融合、安全系统等领域的半导体技术优势,从而实现业务的互补和企业规模的飞跃。
不过,这场收购案中,有一个关键环节就是中国的反垄断审查。而事实上,无论恩智浦还是高通,中国都是最大的销售市场。假如两家强行完成并购,在未来仍有可能面临着我国的反垄断调查、限制甚至是处罚。
同样,对于恩智浦、英飞凌和意法半导体来说,中国既是三家最主要的销售市场,同时也是三巨头耕耘多年的新红利市场。
比如,恩智浦的众多业务早已在中国扎根。2019年汇顶 科技 以1.65亿美元收购NXP的音频应用解决方案业务(VAS),VAS可广泛应用智能手机、智能穿戴、IoT等领域。更早之前的2015年,建广资产与恩智浦宣布成立合资公司瑞能半导体,随后建广资产又以18亿美元巨资收购恩智浦的RF Power部门,成为中国资本首次对具有全球领先地位的国际资产、团队、技术专利和研发能力进行的并购。
2017年,由中资收购恩智浦标准产品业务而组建的安世半导体,已经在半导体细分市场上,取得二极管和晶体管排名第一, ESD保护器件排名第二,小信号MOSFET排名第二,逻辑器件仅次于德州仪器, 汽车 功率MOSFET仅次于英飞凌的名次。
意法半导体也早已在中国耕耘多年,特别是其STM32系列MCU,在中国有巨大的市场影响力。而英飞凌在与1998年已入华的赛普拉斯的整合之后,将获得更大的中国市场,并且英飞凌本身的功率器件在中国的销售也有巨大的增长空间。
在当下华为遭受美国在半导体方面的阻击之时,华为与英飞凌、意法半导体的合作,对于双方来说,都显得非常重要。
在我们完整地回顾完欧洲半导体产业的前世今生之后,如果用一个字来形容,那就是“稳”。
从欧洲半导体产业初兴之时,在各国政府主导下,几乎所有半导体产业都聚集在各国原本的工业巨头之下,享受产业政策的呵护。即使在世纪之交,半导体产业从体量臃肿的母公司独立出来,也仍然只诞生出三家身世优渥的半导体巨头。
而三巨头在发展过程中,其实又一次经历了从臃肿到精简,不断剥离非核心业务的过程。而此后的并购也主要集中在三家重点发展的产业方向,或者优势互补的产业方向上面。
这一切既源于欧洲大陆的传统工业基础优势的延续,又源于欧美亚洲在半导体产业格局上面的复杂博弈。欧洲半导体产业在利用自身传统产业优势的同时,也其实限制了突破传统桎梏的机会。不会像日韩、台湾地区和中国这样,利用人口红利和后发优势,最早从零开始,建立其各自的半导体特色优势。
这也是《圣经》里说的“当上帝关了这扇门,一定会为你打开另一扇门“的现实意义吧。下一篇,我们继续欧洲半导体的回顾,探寻从荷兰飞利浦诞生的一个制造业的奇迹——荷兰光刻机公司ASML。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)