泊松方程表明电荷产生电场:电位的二阶导数与电荷密度成正比。
近似条件:PIN结中无载流子即全部耗尽,施主和受主完全电离。
PIN结的泊松方程:
(0<x<Xn)d^2V(x)/dx^2=-Nd/ε,(-Xp<x<0)d^2V(x)/dx^2=-Na/ε边界条件E(0)=E(Xn)=-dV(x)/dx(x=-Xp,Xn)=0,V(x=-Xp)=0,V(x=Xn)=0
将上面的式子一次积分(注意符号)带入边界条件就能得出电场的分布,再次积分就能得出电势的分布。
扩展资料:
泊松方程可以用格林函数来求解;如何利用格林函数来解泊松方程可以参考屏蔽泊松方程。有很多种数值解。像是松弛法,不断回圈的代数法,就是一个例子。
泊松首先在无引力源的情况下得到泊松方程,△Φ=0(即拉普拉斯方程);当考虑引力场时,有△Φ=f(f为引力场的质量分布)。后推广至电场磁场,以及热场分布。该方程通常用格林函数法求解,也可以分离变量法,特征线法求解。
参考资料来源:百度百科-泊松方程
是求解泊松方程的目的是找到解析解,或者确定近似解。泊松方程是一个常微分方程,用来模拟物体在变化的环境中的发展情况,如机械,热的传播,特定的热辐射物质,电学场和流体动力学。在研究理论物理学问题中,泊松方程可以用来分析物体在自由惯性空间中的运动,示范量子场理论,研究和描述物体电磁波之间的相互作用等。
复变函数中的一个微分方程。没有任何物理意义,没法说。就是套公式用的。高斯定理:由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)