加入碳原子,就可以转变二维半导体?

加入碳原子,就可以转变二维半导体?,第1张

加入一个碳原子,就可以转变二维半导体材料!宾夕法尼亚州立大学研究人员称,一种将碳-氢分子引入半导体材料二硫化钨的单个原子层技术,极大地改变了这种材料的电子特性。可以用这种材料为节能光电设备和电子电路制造新型元件。论文的第一作者材料科学与工程博士生张福(音译)说:我们已经成功地将碳元素引入半导体材料的单层中,其研究2019年5月24日发表在《科学进展》(science Advances上。

在加入碳原子之前,半导体是一种过渡金属二卤代烃(TMD),是n型电子导电体。用碳原子代替硫原子后,这种单原子厚的材料产生了双极效应、p型空穴支和n型支。这就产生了双极性半导体。毛里西奥·特隆斯(Mauricio Terrones)是一名资深作家,也是物理、化学和材料科学与工程领域的杰出教授。一旦材料被高度掺杂碳,研究人员就能产生具有很高载流子迁移率的简并p型。可以制造出n+/p/n+和p+/n/p+结,它们具有这种半导体所没有的特性,在应用方面,半导体被用于工业中的各种设备。

在这种情况下,这些设备中的大多数将是不同种类的晶体管,笔记本电脑里大约有100万亿个晶体管。这种材料也可能对电化学催化有好处,可以提高半导体的导电性,同时又具有催化活性。由于二维材料掺杂需要在特定的条件下同时进行多个过程,因此在二维材料掺杂领域的研究较少。该团队技术使用等离子体将甲烷裂解的温度降低到752华氏度。与此同时,等离子体必须足够强大,能够把硫原子从原子层中撞出来,并取代一个碳氢单位。要打开单层膜并不容易,然后测量载体的传输也不是件小事。

材料科学与工程系教授兼系主任Susan Sinnott提供了指导实验工作的理论计算。当Terrones和Zhang观察到掺杂这种二维材料正在改变它的光学和电子特性时,sinnott团队预测了最佳掺杂原子并预测了其特性,这与实验相符。测量了不同晶体管中碳取代量不断增加时的载流子输运,观察电导的根本变化,直到完全改变了传导类型从负到正。化学掺杂是改变二维过渡金属双卤代烷(2D-TMDs)电子、化学和光学性质的有效途径。研究采用等离子体辅助方法将碳-氢(CH)单元引入WS2单分子层。

发现ch -基团是将碳引入WS2的最稳定掺杂剂,这使得光致发光光谱显示的能带隙从1.98 eV降低到1.83 eV。像差校正高分辨率扫描透射电镜(AC-HRSTEM)结合第一原理计算的观察结果证实,ch基团合并到WS2中的S空位中。根据电子传输测量,未掺杂的WS2表现出单极n型传导。然而,随着碳掺杂水平的增加,CH-WS2单分子层出现了p分支,并逐渐完全变成p型。因此,嵌入到WS2晶格中的ch基团可以调整其电子和光学特性,该方法可用于其他2D-TMDs器件的高效集成。

二维材料是一类新的材料,厚度从单个原子层到几个原子层的材料称为二维材料。最典型的二维材料是石墨烯,只有一个原子厚,约0.34 nm厚,碳原子在平面内以共价键的形式结合,形成六边形蜂窝状平面结构。二维材料表现出不同于普通材料的奇异性质,这是由于其超薄的厚度造成的量子限制效应。例如,石墨烯中的电子在k点附近具有线性色散关系,在k点处表现为无质量狄拉克费米子,具有超高的载流子迁移率(约2E6 cm2V-1s-1,固态通信。

2008,146,351-355)体WS2为间隙半导体,而单层WS2为直接带隙半导体,具有超激子结合能(0.7-0.8 ev,Nature,2014,513,214-218;固态通信。, 2015, 203, 16-20.),并显示出谷旋光特性(proc。纳特。阿卡德。sci。, 2014, 111, 11606-11611).因此,这些奇怪的性质使得二维材料成为物理、化学和材料科学研究的焦点。此外,二维材料的超薄特性有望解决常规半导体面临的短沟道效应,进一步缩小晶体管尺寸,在大规模集成电路领域具有潜在的应用前景。

二维材料包括超导、金属、半金属、拓扑绝缘体、半导体和绝缘体材料。例如,单层TaS2具有超导性,单层NbTe2为金属,少层Bi2Se3为拓扑绝缘体,单层WS2为直间隙半导体,单层BN为绝缘体。二维材料的带隙覆盖面积非常广,可以制备不同波段的光电探测器。随着研究的深入,二维材料的数量越来越多。

英文名称: tungsten disulfide编辑本段二硫化钨简介 二硫化钨是钨和硫的化合物,状态为黑灰色粉末,不溶于水和有机溶剂,不与酸碱发生反应(浓硝酸与氢氟酸的混合液除外),其分子式为WS2。编辑本段二硫化钨作为固体润滑剂特点: 1、具有很低的摩擦系数(0.03),较高的抗极压性能和抗氧化性能(空气中450℃开始分解,650℃完全分解,真空中1100℃开始分解,2000℃完全分解)。适用于高温、高压、高真空、高负荷、高转速、高辐射、强腐蚀、超低温等各种苛刻条件下的润滑。 2、对金属表面有很好的吸附能力。可以添加在工程塑料中做成润滑原件或与某些挥发性溶剂混合均匀后、喷涂于金属表面,在冲锻中用以提高模具的寿命和工件表面的光洁度。 3、二硫化钨粉剂可与油类、脂类配成二硫化钨油剂、二硫化钨油膏、二硫化钨蜡及其他固体润滑块与润滑膜。 此外,二硫化钨还可以在石油化工领域中用做催化剂,其优点是裂解性能高,催化活性稳定可靠,使用寿命长。编辑本段高纯超细二硫化钨微粉的各项技术指标: WS2:99.85-99.95% H2O≤0.05% FSSS:0.3-1μm编辑本段包装标准: 分为25公斤50公斤两种规格 (钢桶加双层塑料袋)编辑本段产品用途: 可作润滑剂 ,性能比二硫化钼好,摩擦系数较低,抗压强度较大。单独用于高温、高压、高转速、高负荷,以及在化学性活泼介质中转运的设备。与其他物料配置的锻压、冲压润滑剂,能延长模具寿命,提高产品光洁度。与 聚四氟乙烯 和 尼龙 等配制的填充材料,可用于制自润滑部件。 WS2的应用领域很广,除了用在航天航空、汽车和碳素减磨材料等外,还用在润滑脂中。凡是在润滑脂中加MOS2的产品均可用WS2替代,在同样的条件下,添加相同数量的石墨、二硫化钼和二硫化钨,则发现油脂的摩擦系数比较是:石墨>二硫化钼>二硫化钨;而最大无卡咬负荷PB则是二硫化钨>二硫化钼>石墨,故可做出结论:润滑性能比较: 二硫化钨>二硫化钼>石墨,而且目前二硫化钨的价格比二硫化钼的价格便宜很多,现在国内已有几家大的润滑脂厂商经过试验,证明用WS2替代MOS的生产出的产品在润滑性能上并没有降低,开始以吨计下订单,( WS2在润滑脂中的使用方法和MOS完全相同)二硫化钼,molybdenum disulfide 辉钼矿的主要成分。黑色固体粉末,有金属光泽。化学式MoS2,熔点1185℃,密度4.80克/厘米3(14℃),莫氏硬度1.0~1.5。1370℃开始分解,1600℃分解为金属钼和硫。315℃在空气中加热时开始被氧化,温度升高,氧化反应加快。二硫化钼不溶于水,只溶于王水和煮沸的浓硫酸。编辑本段制法 制法有:①将钼和硫直接化合。②三氧化钼与硫化氢气体作用。③将三氧化钼、硫、碳酸钾的混合物一起熔融。编辑本段用途 二硫化钼是重要的固体润滑剂,特别适用于高温高压下。它还有抗磁性,可用作线性光电导体和显示P型或N型导电性能的半导体,具有整流和换能的作用。二硫化钼还可用作复杂烃类脱氢的催化剂。 它也被被誉为“高级固体润滑油王”。二硫化钼是由天然钼精矿粉经化学提纯后改变分子结构而制成的固体粉剂。本品色黑稍带银灰色,有金属光泽,触之有滑腻感,不溶于水。产品具有分散性好,不粘结的优点,可添加在各种油脂里,形成绝不粘结的胶体状态,能增加油脂的润滑性和极压性。也适用于高温、高压、高转速高负荷的机械工作状态,延长设备寿命。二硫化钼用于摩擦材料主要功能是低温时减摩,高温时增摩,烧失量小,在摩擦材料中易挥发减摩:由超音速气流粉碎加工而成的二硫化钼粒度达到325-2500目,微颗粒硬度1-1.5,摩擦系数0.05-0.1,所以它用于摩擦材料中可起到减摩作用;增摩:二硫化钼不导电,存在二硫化钼、三硫化钼和三氧化钼的共聚物。当摩擦材料因摩擦而温度急剧升高时, 共聚物中的三氧化钼颗粒随着升温而膨胀,起到了增摩作用;防氧化:二硫化钼是经过化学提纯综合反应而得,其PH值为7-8,略显碱性。它覆盖在摩擦材料的表面,能保护其他材料,防止它们被氧化,尤其是使其他材料不易脱落,贴附力增强;细度:325目-2500目SIO2:0PH值:7-8密度:4.8-5.0g/cm3硬度:1-1.5烧失量:18-22%摩擦系数:0.05-0.09。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8448331.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-16
下一篇 2023-04-16

发表评论

登录后才能评论

评论列表(0条)

保存