集成电路883和883b有什么区别

集成电路883和883b有什么区别,第1张

根据用途,元器件的质量等级可分为:用于元器件生产控制、选择和采购的质量等级和用于电子设备可靠性预计的质量等级两类,两者有所区别,又相互联系。

用于元器件生产控制、选择和采购的质量等级

元器件的质量等级与其生产过程执行的规范是密不可分的,规范要求质量控制的严格程度,决定了元器件质量等级的高低。在大多数军工产品中采用国产元器件的质量等级分为:(七专)7905、(七专)8406、(七专)840611A(半导体分立器件)、(七专)补充技术协议、国军标(GJB)等五种。前四种可以认为是四种质量等级,而国军标由于参照采用了美国军用(MIL)标准,其质量等级的分类方法比较复杂,器件分为3~4个质量保证等级(简称质量等级)元件分为有可靠性指标的和无可靠性指标的两类,对于有可靠性指标的元件可分为若干个失效率等级。

国军标元器件的质量等级包括了:器件的质量保证等级和有可靠性指标元件的失效率等级,如表1所示。

表1国军标元器件质量分级

进口元器件的质量分级更为复杂,考虑到较多的是采用美国军用元器件及部分欧洲空间局(ESA)元器件,所以简要介绍MIL和欧洲空间局空间元器件协调组(ESA/SCC)元器件质量分级的情况。

美军标元器件的质量分级如表2所示。

表2美军标元器件质量分级

从1994年6月美国宣布对军用标准实行改革以来,表2中涉及的美军标中,MIL-M-38510已并入MIL-I-38535,而且都已改成性能规范(规范代号的字母改为MIL-PRF-,以后的数字不变,如MIL-PRF-38535C),内容也有较大的变化,例如采用统计过程控制(SPC)技术后,原来军用规范规定要100%做的筛选项目,允许减少甚至可以全部免除。因此,在选择和采购元器件时,必须加以注意。

这里特别要对微电路(包括:半导体集成电路及混合集成电路)的质量等级作些说明,其中B级与S级是微电路的质量保证等级,此外凡符合MIL-STD-883《微电路试验方法和程序》1.2.1条规定的微电路,属于质量等级为883级的微电路。其特点是微电路生产单位声称已按总规范MIL-M-38510及相应的详细规范进行质量控制,但未进行认证。因此,具有不同信誉的微电路生产单位,电路的质量将有很大差别。从1995年5月14日开始MIL-M-38510并入MIL-PRF-38535后,已不生产B级、S级微电路,所以现在按MIL-M-38510采购的微电路,其质量等级大多数是883级,在883级微电路中,有些元器件供应商还根据对电路不同的质量控制,分为883B和883S,但其质量等级都不如B级有保证。

ESA/SCC元器件的质量分级较有规律,所有元器件都分为B、C两级,但在采购时还可选择不同的批验收试验(缩写LAT,相当质量一致性检验),由于LAT分为1、2、3类,所以ESA/SCC元器件可分为B1、B2、B3、C1、C2、C3六个质量等级。

用于电子设备可靠性预计的质量等级

当按GJB/Z

299或MIL-HDBK-217进行电子设备可靠性预计时,在该标准中列出了另一种质量等级与表4-1或表4-2列出的质量保证等级及失效率等级有一一对应的关系。由于质量保证等级及失效率等级有时也可简称为质量等级,所以两者很易混淆。但只有军用级元器件才有质量保证等级及失效率等级,而对于所有元器件都有进行可靠性预计的质量等级,这是两者是主要的差别。

今日科创板我们一起梳理一下富信 科技 ,公司是国内外少数全产业链半导体热电技术解决方案及应用产品提供商之一,主营业务为半导体热电器件及以其为核心的热电系统、热电整机应用产品的研发、设计、制造与销售业务。

半导体热电技术解决方案能够广泛应用于消费电子、通信、医疗实验、 汽车 、工业、航天国防、油气采矿等众多领域。 其中,公司在消费电子领域应用市场已经深耕十余年,依靠研发优势、技术优势和全产业链的业务布局。公司以热电整机应用为技术解决方案载体,成功将半导体热电制冷技术与啤酒机、恒温床垫、冻奶机、冰淇淋机等众多创新性使用场景相结合,实现了半导体热电技术在消费领域的大规模产业化应用,满足了人们改善生活品质的个性化需求和对美好生活的向往。此外,公司依托多年来积累的研发经验和技术沉淀,积极拓展了半导体热电技术在通信、 汽车 等领域的终端应用市场。

尤其是在通信领域,针对目前高性能微型热电器件市场整体上仍由国际厂商或其在国内设立的子公司所主导的现状,公司抓住 2019 年 5G 网络建设的兴起带来的高性能微型热电器件市场需求机遇,在半导体热电器件的热电性能、可靠性方面实现技术突破,成功研制了用于 5G 网络中光模块温控的高性能微型热电制冷器件,并已向客户小批量供货

半导体热电技术主要包括半导体热电制冷技术和温差发电技术两个应用方向,分别利用了半导体材料的佩尔捷效应(Peltier effect)和泽贝克效应(Seebeckeffect)实现了电能和热能之间的相互转换,是一种环保型制冷技术和绿色能源技术

根据 MarketsandMarkets 的报告数据,2017 年至 2019 年,半导体温差发电系统市场规模分别为 3.99 亿美元、4.26 亿美元、4.60 亿美元,预计 2025 年将达到 7.41 亿美元。

根据 MarketsandMarkets 的报告数据,2016 年至 2018 年,半导体热电器件在消费电子产品应用领域的对外销售市场规模分别为 1.05 亿美元、1.18 亿美元、1.31 亿美元,预计 2024 年将达到 2.31 亿美元。2017 至 2020 年 1-6 月,公司应用于消费电子领域的半导体热电器件产品销售收入分别为 4,981.23 万元、5,615.21 万元、5,560.24 万元,2,882.56 万元,仍存在较大的存量及增量市场空间。

根据 MarketsandMarkets 的报告数据,2016年至 2018 年,半导体热电器件在通信应用领域的对外销售市场规模分别为 1.02亿美元、1.11 亿美元、1.20 亿美元,预计 2024 年将达到 1.74 亿美元。

除了消费电子和通信领域,半导体热电制冷技术在其他领域也有着广泛应用。在医疗领域,主要用于冷敷设备、便携式胰岛素盒、移动药箱,以及 PCR 测试仪等实验室中各种仪器仪表、检测设备的温度控制;在 汽车 领域,主要用于车载冰箱、车载恒温杯架、 汽车 调温座椅,以及人机交互设备、动力电池、传感器等设备的热管理;在工业领域,可用于对冷源展示仪、烟气冷却、CCD 图像传感器、激光二极管、露点测定仪等产品的精准控温;在航天国防领域,可用于探测器和传感器的温度控制、激光系统冷却、飞行服温度调节、设备外壳冷却等。

按照细分应用领域不同,半导体热电器件及热电系统市场呈现出不同的竞争格局。根据 MarketsandMarkets 和 Transparency 的市场调研报告,以及行业内主要企业官方网站的相关业务介绍, 目前应用于通信、 汽车 、航空国防等领域的高性能半导体热电器件及热电系统市场,主要掌握在日本 Ferrotec、KELK Ltd.,俄罗斯 RMT,美国 Phononic、Gentherm 等外资企业或其在国内设立的子公司手中 ,这些企业技术实力雄厚,在相关领域具有先发优势和丰富的行业经验。而国内大部分企业由于起步较晚,还处于技术提升阶段,技术水平与国际先进水平相比尚有一定差距。

目前,热电整机应用产品市场主要参与者为我国内资企业及国外品牌厂商在国内设立的生产企业。其中,在外销市场,我国内资企业主要通过 ODM 模式为国外品牌厂商代工生产,而在内销市场则主要采用 ODM 和自主品牌经营相结合的模式。

由于热电整机应用市场发展时间较短,尚处于成长阶段,各类新型技术解决方案亦层出不穷,行业内尚未形成具有垄断效应或具有显著品牌优势的企业。 未来,随着热电整机应用产品功能需求的日渐提升,以及欧美发达国家对热电整机应用产品的能效、环保标准要求越来越高,具有较强研发能力的热电整机应用制造企业将在市场竞争中取得优势,市场集中度将逐渐提升。

从下游应用市场的认可度看,在消费电子领域,公司与国内外知名电器品牌SEB、伊莱克斯、美的,日本 时尚 家居品牌 Bruno、知名咖啡机品牌优瑞(Jura)建立了良好的合作关系;在通信领域,公司最新开发的高性能微型热电制冷器件产品已于 2020 年向客户小批量供货。

从市场占有率看,根据智研咨询的统计数据,2019 年中国出口的半导体制冷式家用型冷藏箱金额为 22,871.60 万美元,约合人民币 160,101.20 万元,2019年公司出口的热电整机应用产品中半导体制冷式家用型冷藏箱(包括啤酒机、恒温酒柜、电子冰箱、冻奶机)产品金额为 31,657.03 万元,约占当年该类产品中国出口总额的 19.77%

公司热电整机应用、热电系统业务在 A 股上市公司和新三板挂牌公司中无可比公司,热电器件业务与新三板挂牌公司富连京(872240.OC)具有一定的可比性。

一、国内知名的半导体热电器件生产企业

富信 科技 前身佛山市顺德区富信制冷设备有限公司成立于2003年,公司主营单级热电制冷器件、冰胆、酒柜冰箱系统、以及恒温酒柜、电子冰箱等产品;2006公司正式更名为广东富信电子 科技 有限公司;2009年公司微型热电器件、多级热电制冷器件问世;2011年公司成功研发温差发热器件、通讯基站电池柜系统;2013年公司完成股份制改造,正式更名为“广东富信 科技 股份有限公司”;2014年公司的啤酒机系统(2L)、床垫系统、恒温床垫、380L大容积酒柜、啤酒机(2L)上市;2015年冰淇淋机系统、冰淇淋机产品试产成功并量化生产;2016年高性能温差发电器件等新产品上市;2017年公司热电制冷技术研发成果显著,成功研制冷热循环器件、大功率热电制冷器件,同时、热管静音系统、烟气冷却系统问世,新型冻奶机及静音冰箱上市;2018年除湿机系统完成小批量试制;2019年高性能单极热电制冷器件、冷源展示仪系统、植物培养箱系统以及节能酒柜等产品量产;2020年公司生产的高端半导体热电制冷器件可靠性达到GR-468-CORE和 MIL-STD-883两项国际先进测试标准的要求,除湿机、节能冰箱的研制进一步丰富公司主营产品;2021年科创板上市。

二、业务分析

2017-2020年,营业收入由5.12亿元增长至6.24亿元,复合增长率6.82%,20年实现营收同比下降0.32%;归母净利润由0.30亿元增长至0.74亿元,复合增长率35.11%,20年实现归母净利润同比增长2.78%;扣非归母净利润由0.31亿元增长至0.67亿元,复合增长率29.29%,20年实现扣非归母净利润同比下降6.94%;经营活动现金流分别为0.43亿元、0.09亿元、1.30亿元、0.65亿元,20年实现经营活动现金流同比下降50.00%。

分产品来看,2020年半导体热电器件实现营收0.79亿元,占比12.62%;半导体热电系统实现营收1.44亿元,占比23.06%;覆铜板实现营收0.28亿元,占比4.42%;热电整机应用实现营收3.54亿元,占比56.79%;陶瓷基板实现营收0.00亿元,占比0.03%;整机散、配件实现营收0.19亿元,占比3.08%。

2019年公司前五大客户实现营收2.67亿元,占比42.59%,其中第一大客户实现营收1.45亿元,占比23.17%。

三、核心指标

2017-2020年,毛利率由23.11%提高至28.43%;期间费用率18年下降至8.70%,随后逐年上涨至10.15%,其中销售费用率由5.73%下降至4.22%,管理费用率由4.42%上涨至18年高点5.12%,20年下降至4.57%,财务费用率18年下降至低点-0.89%,随后逐年下降上涨至1.36%;利润率由5.88%提高至12.06%,加权ROE由15.39%提高至19年高点25.74%,20年下降至23.10%。

四、杜邦分析

净资产收益率=利润率*资产周转率*权益乘数

由图和数据可知,18年净资产收益率的提高是由于利润率和资产周转率的提高,19年净资产收益率的提高是由于利润率的提高,20年净资产收益率的下降是由于权益乘数和资产周转率的下降。

五、研发支出

2017-2020H1公司研发费用分别为 1,845.59 万元、2,281.50 万元、2,687.50 万元和 985.75 万元,占比分别为3.61%、3.79%、4.29%、3.96%。

看点:

半导体热电制冷技术凭借其不可替代的灵活性、多样性、可靠性等优势和特点,成为支撑诸多现代产业的关键技术,能够广泛应用于消费电子、通信、医疗实验、 汽车 、工业、航天国防、油气采矿等领域,随着热电技术的进步和推广,其下游应用不断成熟,新产品不断涌现,市场需求呈现出逐年增长的态势。消费电子领域是公司目前产品的主要实际应用方向,通信领域是公司未来的重点拓展方向。

        最近单位加强了元器件二次筛选的管理工作,在执行过程中遇到了一些问题,就把相关的标准要求收集整理了一下,尝试把这个问题说清楚。

一、元器件筛选的作用

      大多数元器件的故障率随时间的变化曲线是一个“浴盆曲线”,可分为早期失效期、稳定/偶发失效期、磨损失效期三个阶段。其中早期失效期的故障主要是设计与制造中的缺陷。如设计不当、材料缺陷、加工缺陷等,在投入使用后会很快暴露出来,目前主要通过元器件筛选的办法来减少。

二、元器件筛选的分类

       筛选是为了剔除早期失效的元器件而进行的试验,是一种对产品进行全数检验的非破坏性试验,通过按照一定的程序施加环境应力,激发出产品潜在的设计和制造缺陷,以便剔除早期失效产品,降低失效率。

      元器件的筛选可以分为一次筛选和二次筛选。 一次筛选 是指元器件生产方按照军用电子元器件规范或供需双方签订的合同进行的筛选试验,与一般的研制生产企业关系不大,不在本文赘述。 二次筛选(或叫补充筛选) 是在已采购的元器件在“一次筛选”试验没有满足使用方规定的项目要求的技术条件时,由使用方进行的筛选。

      在一定条件下,虽然二次筛选是提高元器件批质量的有效措施之一,但它也有其局限性和风险性,并不是所有的元器件都要进行二次筛选,也不能把二次筛选看作是任何情况下都是必须的,只有少数采购不到高质量等级的元器件才需要进行二次筛选。因为筛选只能提高批产品的使用可靠性,不能提高产品的固有可靠性。因此,在选择元器件时,应根据整机,设备的质量与可靠性要求,选择相应的高质量等级的元器件。特别是电子整机、设备的关键件、重要件,一定要选择高质量等级的元器件。

三、元器件筛选的分级

      根据 GJB7243-2011《军用电子元器件筛选技术要求》 的规定,元器件筛选可分为I、II、III三个筛选等级。

      1)I级是最高水平的筛选等级,相当于半导体器件中的S(K、JY)级或有可靠性指标(质量等级)失效率等级不低于S级、宇航级等高可靠元件的筛选。

      2)II级是中等水平的筛选等级,相当于半导体器件中的B(H、JCT)级或有可靠性指标(质量等级)失效率等级为R级、P级中档元件的筛选。

      3)III级是一般水平的筛选等级,相当于半导体器件中的B1(JT、G)级或有可靠性指标(质量等级)失效率为M级以及无可靠性指标(质量等级)的一般元件的筛选。

      元器件筛选分级比较简单,但其中涉及很多种元器件产品质量保证等级标识,需要一一进行说明。军用电子元器件规定的可靠性保证要求有两种表征方式:失效率等级和产品保证等级。前者用于大多数(并非全部)电子元件可靠性水平的评定,后者则用于评价电子器件(包括部分电子元件)的可靠性保证水平。

      1)失效率等级。失效率是指工作到某时刻尚未发生故障(失效)的产品,在该时刻后单位时间内发生故障(失效)的概率。根据 GJB2649-96《军用电子元件失效率抽样方案和程序》 的规定,失效率等级分为五类:L级(亚五级,最大失效率3×10-51/h)、M级(五级,最大失效率10-51/h)、P级(六级,最大失效率10-61/h)、R级(七级,最大失效率10-71/h)、S级(八级,最大失效率10-81/h)。

      2)产品保证等级。产品保证等级与失效率有较大的不同,在 GJB33A-97《半导体分立器件总规范》 的规定,半导体分立器件质量保证等级分为普军级、特军级、超特军级和宇航级四级,分别用字母JP、JT、JCT和JY表示。

      在 GJB597A-96《半导体集成电路总规范》 中,产品质量保证等级分为S级、B级、B1级三个等级,其中S级是最高产品质量保证等级,供宇航用;B级也属于高质量、高可靠的标准军用产品;B1级属于按照MIL-STD-883要求进行试验和检验的“准高可靠”的“883级”器件。需要说明的是,GJB597A-96《半导体集成电路总规范》(之所以介绍,是因为GJB7243引用的是该版标准)已作废,最新的 GJB597B-2012《半导体集成电路通用规范》 中,将产品质量保证等级分为S级、BG级和B级三种,并明确S级是最高产品质量保证等级,供宇航用;BG级是介于S级、B级间的质量等级;B级为标准军用质量保证等级。

      在 GJB2438B-2017《混合集成电路通用规范》 (GJB2438A的质量等级定义相同)中,产品质量保证等级分为K级、H级、G级、D级四个等级,其中K级为最高可靠性等级,预定供宇航用;H级为标准军用质量等级;G级为标准军用质量等级的降级;D级为一个由承制方规定的质量等级。

四、元器件筛选的实施

      GJB7243-2011《军用电子元器件筛选技术要求》给出了元器件二次筛选的实施方式,在介绍具体的实施方式前,需要有三个说明。

      1)为保证军用元器件的质量,我国制定了的(七专)7905、(七专)8406、(七专)840611A(半导体分离器件)、(七专)补充技术协议等。“七专”技术条件是建立我国军用元器件标准的基础,目前按“七专”条件或其加严条件控制生产的元器件仍是航天等部门使用的主要品种(“七专”指专人、专机、专料、专批、专检、专技、专卡)。按“七专”或“七专加严”进行控制的元器件,质量等级为G或G+。

      2)筛选优先顺序。根据GJB7243规定,应按以下优先顺序进行筛选工作:a)元器件使用方的采购文件;b)元器件的产品规范;c)GJB7243标准。也就是说,当客户有筛选要求,以客户要求优先,客户无明确要求时,以元器件产品规范优先,客户及产品规范均无要求时,才以GJB7243进行筛选。

      3)根据军用型号的重要程度及应用部位的关键性,将元器件的应用分为3个应用等级:1级指用于重点工程(型号)关键部位的元器件;2级指用于重点工程(型号)非关键部位或非重点工程(型号)关键部位的元器件;3级指用于非重点工程(型号)非关键部位的元器件。

      元器件的质量等级是元器件本身的属性,由元器件设计、材料和过程控制的严格程度所决定,并通过了相应产品规范规定的试验(检验)考核。元器件的应用等级是由采用元器件工程(型号)的重要程度及应用部位的关键程度所决定。当应用等级与所使用的元器件质量等级相适应时,可直接使用。当不适用时就应按规定进行补充筛选或(和)鉴定检验。

      本文只是对元器件二次筛选进行简单介绍,对二次筛选的试验和检验项目需要根据元器件的种类参照具体的军标实施,对元器件的一次筛选、元器件补充鉴定内容未进行说明,如有需要请自行查阅。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8458005.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-16
下一篇 2023-04-16

发表评论

登录后才能评论

评论列表(0条)

保存