此外,与其他陶瓷材料相比,Si 3 N 4 陶瓷材料具有明显优势,尤其是在高温条件下氮化硅陶瓷材料表现出的耐高温性能、对金属的化学惰性、超高的硬度和断裂韧性等力学性能。Si 3 N 4 陶瓷的抗弯强度、断裂韧性都可达到AlN的2倍以上, 特别是在材料可靠性上,Si 3 N 4 陶瓷基板具有其他材料无法比拟的优势。
而氮化铝AlN,是兼具良好的导热性和良好的电绝缘性能少数材料之一,氮化铝具备以下优点:
(1)氮化铝的导热率较高,室温时理论导热率最高可达320W/(m·K),是氧化铝陶瓷的8~10倍,实际生产的热导率也可高达200W/(m·K),有利于LED中热量散发,提高LED性能;
(2)氮化铝线膨胀系数较小,理论值为4.6×10 -6 /K,与LED常用材料Si、GaAs的热膨胀系数相近,变化规律也与Si的热膨胀系数的规律相似。另外,氮化铝与GaN晶格相匹配。热匹配与晶格匹配有利于在大功率LED制备过程中芯片与基板的良好结合,这是高性能大功率LED的保障。
(3)氮化铝陶瓷的能隙宽度为6.2eV,绝缘性好,应用于大功率LED时不需要绝缘处理,简化了工艺。
(4)氮化铝为纤锌矿结构,以很强的共价键结合,所以具有高硬度和高强度,机械性能较好。另外,氮化铝具有较好的化学稳定性和耐高温性能,在空气氛围中温度达1000℃下可以保持稳定性,在真空中温度高达1400℃时稳定性较好,有利于在高温中烧结,且耐腐蚀性能满足后续工艺要求。
sio2是原子晶体,是玻璃的主要成分.二氧化硅不能与水直接化合成为酸,能跟碱性氧化物或者强碱溶液或熔融状态下反应,常与naoh生成硅酸钠。sio2+naoh=na2sio3+h2osio2化学性质较为稳定。sio2还能与hf(氢氟酸)反应sio2+4hf=sif4+2h2osi3n4及活性炭黑为原料,按照两者质量比为31制成试样。在埋炭条件下,将试样分别在1480℃、1500℃、1550℃和1600℃保温3h热处理。利用sem、eds及xrd等检测方法,结合热力学分析,研究了高温状态下β?si3n4在含碳耐火材料中的稳定性以及作为过渡相向碳化硅的转化。结果表明:在该试验条件下,β?si3n4在含碳材料中将作为过渡相向sic转化,明显的转化温度>1500℃,1600℃仍存在较多未转化的氮化硅;氮化硅颗粒与炭黑的反应主要从接触面开始,然后向内逐步推进;β?si3n4的粒度对其转化率影响较大。sio2当达到1873k时熔化也就是1599.85℃si3n4当达到1000℃时熔化。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)