计数器 以电脉冲的形式记录、分析辐射产生的某种信息。计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。
气体电离探测器 通过收集射线在气体中产生的电离电荷来测量核辐射。主要类型有电离室、正比计数器和盖革计数器。它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。电离室工作电压较低,直接收集射线在气体中原始产生的离子对。其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生更多的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。
多丝室和漂移室 这是正比计数器的变型。既有计数功能,还可以分辨带电粒子经过的区域。多丝室有许多平行的电极丝,处于正比计数器的工作状态。每一根丝及其邻近空间相当于一个探测器,后面与一个记录仪器连接。因此只有当被探测的粒子进入该丝邻近的空间,与此相关的记录仪器才记录一次事件。为了减少电极丝的数目,可从测量离子漂移到丝的时间来确定离子产生的部位,这就要有另一探测器给出一起始信号并大致规定了事件发生的部位,根据这种原理制成的计数装置称为漂移室,它具有更好的位置分辨率(达50微米),但允许的计数率不如多丝室高。
半导体探测器 辐射在半导体中产生的载流子(电子和空穴),在反向偏压电场下被收集,由产生的电脉冲信号来测量核辐射。常用硅、锗做半导体材料,主要有三种类型:①在n型单晶上喷涂一层金膜的面垒型②在电阻率较高的 p型硅片上扩散进一层能提供电子的杂质的扩散结型③在p型锗(或硅)的表面喷涂一薄层金属锂后并进行漂移的锂漂移型。高纯锗探测器有较高的能量分辨率,对γ辐射探测效率高,可在室温下保存,应用广泛。砷化镓、碲化镉、碘化汞等材料也有应用。
闪烁计数器 通过带电粒子打在闪烁体上,使原子(分子)电离、激发,在退激过程中发光,经过光电器件(如光电倍增管)将光信号变成可测的电信号来测量核辐射。闪烁计数器分辨时间短、效率高,还可根据电信号的大小测定粒子的能量。闪烁体可分三大类:①无机闪烁体,常见的有用铊(Tl)激活的碘化钠NaI(Tl)和碘化铯CsI(Tl)晶体,它们对电子、γ辐射灵敏,发光效率高,有较好的能量分辨率,但光衰减时间较长;锗酸铋晶体密度大,发光效率高,因而对高能电子、γ辐射探测十分有效。其他如用银 (Ag)激活的硫化锌ZnS(Ag)主要用来探测α粒子玻璃闪烁体可以测量α粒子、低能X辐射,加入载体后可测量中子;氟化钡 (BaF2)密度大,有荧光成分,既适合于能量测量,又适合于时间测量。②有机闪烁体,包括塑料、液体和晶体(如蒽、茋等),前两种使用普遍。由于它们的光衰减时间短(2~3纳秒,快塑料闪烁体可小于1纳秒),常用在时间测量中。它们对带电粒子的探测效率将近百分之百。③气体闪烁体,包括氙、氦等惰性气体,发光效率不高,但光衰减时间较短(<10纳秒)。
切伦科夫计数器 高速带电粒子在透明介质中的运动速度超过光在该介质中的运动速度时,则会产生切伦科夫辐射,其辐射角与粒子速度有关,因此提供了一种测量带电粒子速度的探测器。此类探测器常和光电倍增管配合使用;可分为阈式(只记录大于某一速度的粒子)和微分式(只选择某一确定速度的粒子)两种。
除上述常用的几种计数器外,还有气体正比闪烁室、自猝灭流光计数器,都是近期出现的气体探测器,输出脉冲幅度大,时间特性好。电磁量能器(或簇射计数器)及强子量能器可分别测量高能电子、γ辐射或强子(见基本粒子)的能量。穿越辐射计数器为极高能带电粒子的鉴别提供了途径。
径迹室 通过记录、分析辐射产生的径迹图象测量核辐射。主要种类有核乳胶、云室和泡室、火花室和流光室、固体径迹探测器。
核乳胶 能记录带电粒子单个径迹的照相乳胶。入射粒子在乳胶中形成潜影中心,经过化学处理后记录下粒子径迹,可在显微镜下观察。它有极佳的位置分辨本领(1微米),阻止本领大,功用连续而灵敏。
云室和泡室 使入射粒子产生的离子集团在过饱和蒸气中形成冷凝中心而结成液滴(云室),在过热液体中形成气化中心而变成气泡(泡室),用照相方法记录,使带电粒子的径迹可见。泡室有较好的位置分辨率(好的可达10微米),本身又是靶,目前常以泡室为顶点探测器配合计数器一起使用。
火花室和流光室 这些装置都需要较高的电压,当粒子进入装置产生电离时,离子在强电场下运动,形成多次电离,增殖很快,多次电离过程中先产生流光,后产生火花,使带电粒子的径迹成为可见。流光室具有较好的时间特性。它们都具有较好的空间分辨率(约 200微米)。除了可用照相记录粒子径迹外,还可记录电脉冲信号,作为计数器用。
固体径迹探测器 重带电粒子打在诸如云母、塑料一类材料上,沿路径产生损伤,经过化学处理(蚀刻)后,将损伤扩大成可在显微镜下观察的空洞,适于探测重核。
由许多类型的探测器、磁铁、电子仪器、计算机等组成的辐射谱仪,可获得多种物理信息,是近代核物理及粒子探测的发展趋势。
电磁辐射对我们人体是有危害的,而要想知道电磁辐射究竟有多少就要对其进行准确测量,才能了解其是否在安全标准范围内,那么电磁辐射测量方法是什么呢? 电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、X-射线和伽马射线等等。电磁辐射测量的方法通常情况下,我们要想准确测量电磁辐射的数字,就要使用电磁辐射检测仪。而电磁辐射检测仪主要用于生活中电器、高压线、基站等的辐射测量,可以有效帮助人们远离辐射源,免受辐射的危害!电磁辐射检测仪的使用方法1、短时按下“电源开关”开机,默认为“磁场辐射强度”检测,超过2毫高斯报警响长时间按下“检测模式转换”不放松,约两秒后,切换到“电场辐射强度”检测。注意:本仪器为高精度测量仪器,由于地球磁场因素,仪器在偶尔可能出现非常短暂的数字显示或报警,这并不是故障现象。2、将电磁辐射检测仪握在手上,将“测试区”对准待测物品,慢慢移动接近该物品,直到实际上接触到该物品,越靠近待测物品,电磁场或电场的强度会随之增大,报警频率也越快。3、在测量中,试着改变仪器对待测物品的角度与位置,可得到最大的读值。4、如果待测物品在测量中被关掉电源,在“磁场辐射强度检测”模式下,读值应该恢复到零状态在“电场辐射强度检测”模式下,某些物品仍可检测到电磁波信号,那属于该物品接收到的外部电磁波信号,对人体无危害。5、短时按下“报警设置”,可设置打开和关闭报警音。6、短时按下“峰值锁定”,可设置打开和取消峰值锁定功能。峰值锁定功能可锁定检测过程中的最大值欢迎分享,转载请注明来源:内存溢出
评论列表(0条)