英特尔发布会在哪里看

英特尔发布会在哪里看,第1张

哔哩哔哩。英特尔是半导体行业和计算创新领域的全球领先厂商,创始于1968年。如今,英特尔正转型为一家以数据为中心的公司,发布会可在哔哩哔哩观看,英特尔与合作伙伴一起,推动人工智能、5G、智能边缘等转折性技术的创新和应用突破,驱动智能互联世界。

英特尔这几年估计心很累。

除了PC销量下滑、工艺进展迟滞,当英伟达股价上涨、新型AI处理器问世、AMD收购赛灵思、苹果发布新芯片……英特尔每每都要被拖出来吊打一次。

是廉颇老矣?还是大象善舞本来就不容易?

从英特尔现在的业务情况来看,传统PC业务已经从原来的八成下降到现在的五成,而数据中心则一路上扬,营收从原来的二成增长到了五成。或许老牌 科技 企业都逃不开波峰低谷的发展周期,于是转型就成为必然。

从2017年开始,英特尔就宣称自己是一家数据公司,因为“数据才是未来的石油”。2018年底,英特尔宣布最新战略目标,即以制程和封装、XPU架构、内存和存储、互连、安全、软件六大技术支柱为核心,明确了“以PC为中心”转向“以数据为中心”的转型目标。

而就在昨晚,英特尔正式发布其首款数据中心独立图形显卡——服务器GPU,以及oneAPI Gold工具包。这也意味着,英特尔六大战略中的XPU架构(XPU架构中的“X”指的是包含 CPU、GPU、专用加速以及FPGA 的混合架构)集齐最后一条“神龙”;软件方面,one API Gold继Beta版本发布一年后,也完成了阶段性的跃升。软硬件共同发力,英特尔卯足力气搅动数据中心本来就不平静的池水。

局势已经非常明朗,英特尔、英伟达、AMD都在打造自家的XPU架构,通过收购也好、自研也罢,在硬件架构和软件工具上的布局都是一副当仁不让的态势。

英特尔加速计算20年坎坷路

英特尔不是没有过独立显卡GPU的尝试,只不过是20年前。2009年末,英特尔宣布取消“Larrabee”图形芯片项目,将重注都押在多核的技术路径上。

彼时,英伟达已经推出Tesla,大举进攻。AMD也在2006年收购了ATI后正式进入显卡领域,虽然在CPU和GPU面临着英特尔和英伟达的双重夹击,却也是成就今天三足鼎立局面的关键一步。

英特尔在集成显卡这条路的经济账没毛病。将图像处理的部分整合到CPU中,这样一来核心显卡始终是和CPU一体的,必要时还是需要调用部分CPU的运算能力来提高图像处理效率。当性能需要提升时怎么办?增加核显,还可以提高处理器价格,间接增加利润。或许正因如此,英特尔没有太大动力去开发独显GPU,在宣布取消Larrabee项目时,信誓旦旦表示不会推出独立显卡GPU,至少短期内不会。

被停掉的Larrabee后来成为了至强融核(Xeon Phi)协处理器的原型,这是英特尔首款集成众核(Many Integrated Core,MIC)架构的产品,用作高性能计算的超级计算机或服务器的加速卡,顺应了高性能计算市场的异构需求。Xeon Phi也一度被用到超级计算机上,雄霸世界超算榜单,例如我国的天河一号、天河二号,直到2015年4月被美国禁止向中国超算中心出口Xeon Phi。

受市场需求颓势的主要影响,2018年开始,代号为Knight Landing的Xeon Phi 7210、7230等产品列入停产计划;去年,代号为Knight Mill的Xeon Phi处理器也启动停产计划,并宣布将在今年7月31日停止出货。

而就在英特尔在加速计算曲折前进的这些年,英伟达GPU一骑绝尘,AMD也在CPU和GPU双线开花。虽说船大不好调头,但作为巨头,必要时确实要勇于自我piapia打脸。

2017年末,原AMD RTG总裁、显卡首席架构师Raja Koduri离开AMD,加入英特尔。当时业界就推断英特尔可能要重启独显计划,直到Xeon Phi陆续停产,这一猜想在去年达到沸点。

直到今年8月的架构日上,英特尔曝光了针对数据中心的首款基于 Xe 架构的独立图形显卡,有关英特尔开发独显GPU的传言正式得到验证。

Xe GPU的出现,从多个维度补充了英特尔缺失的拼图。它正式宣告英特尔进军高端GPU领域,将触角伸向移动端、桌面端、云 游戏 、数据中心、高性能计算等多个领域。此外,它作为英特尔向量计算的代表产品,进一步补全了英特尔的XPU组合。

XPU架构成为必争之地

仅有CPU一条路确实走不通,这一点AMD的方向从一开始就是正确的,英特尔这些年也通过买买买扩充了XPU架构。

2015~2019这几年间,英特尔都有重磅收购,几乎都是围绕这个架构理念展开的。2015年收购FPGA供应商Altera,2016年收购AI芯片供应商Nervana,2017年收购了ADAS芯片供应商Mobileye和AI芯片供应商Movidius,2018年收购eASIC,2019年收购云端AI芯片供应商Habana Labs。

直到昨天正式推出针对数据中心的首款服务器GPU,至此,XPU全家桶已配齐。如果说英特尔之前搁置GPU计划是出于市场策略和技术瓶颈,那么,今天重返这一市场,难度就会低吗?英伟达的GPU性能不够好吗?AMD的性价比它不香吗?用户选择英特尔的理由是什么?

据英特尔的技术大拿表示,在过去的20年里,英特尔其实一直在提供集成图形显卡。而显然,随着工作负载和性能需求都在上升,AI和流媒体在这些工作负载中的占比也在上升。英特尔正在扩展为更为坚实的Linux堆栈,并将从数据中心一些独特的用例开始,比如安卓云 游戏 和流媒体服务。

这是非常明智的一个起步。安卓云 游戏 在全球 游戏 开发生态系统中占据74%的市场份额,增长空间非常大;而流媒体服务涉及高密度的媒体转码和编码,现在小视频、直播盛行,有着巨量的用户市场。英特尔希望通过至强可扩展处理器与全新服务器GPU的组合,加上开源和授权的软件组件,通过较低的总体拥有成本(TCO),为安卓云 游戏 以及实时顶级视频直播的高密度媒体转编码提供高密度、低时延的解决方案。

但不管怎样,英特尔这一次押注数据中心GPU,将会是更为艰难的挑战。首先庞大的研发投入仍然必不可少,更重要的是,这一次要突围的技术需要多点开花,要在AI、5G、自动驾驶等领域都要持续投入,基础研发上既要保持专注还要保证核心竞争优势,软件要更易用,生态要更强大。

互相渗透的软件生态

XPU的确很强大,但是想要把整个计算系统打通,除了硬件,软件平台也是要搭建的。因为涉及到具体的开发工作,在不同架构之间切换并不容易,尤其是想要跨厂商进行切换的时候,这也是业内普遍的痛点。

英特尔曾在2019年的SuperComputing大会上首次提出oneAPI,并表示这是为实现统一、简化的跨架构编程模型所提出的愿景,希望能够不受限于单一厂商专用的代码构建,且能实现原有代码的集成。借助oneAPI,开发者可以针对他们要解决的特定问题选择最佳的加速架构,且无需为一个架构和平台再重写软件。这不仅能够释放底层硬件的性能潜力,同时能降低软件开发和维护成本。继Beta版本发布一年后,相信这次最新发布的Gold版本在代码稳定性、成熟度以及性能表现方面值得期待。

既然支持跨架构、跨厂商的切换,那么不妨设想一下,如果英特尔、英伟达和AMD的芯片同在一个系统中,oneAPI是否可以提供支持?

对这一问题,英特尔方面给出的答案是肯定的,哪怕这个系统中没有英特尔的芯片,也是可以支持的。这意味着什么?它将成为开放的行业规范,任何人都可以运用它,它甚至可以进入英伟达、AMD的生态系统。面对竞争,英特尔向友商敞开怀抱,并且进入他们的阵营拥抱他们和他们的盟友。oneAPI就是英特尔在软件乃至生态层面最大的雄心。

英伟达的做法异曲同工。在2019年法兰克福国际超算大会上,英伟达已经宣布其CUDA编程架构开放支持Arm CPU架构,向Arm生态系统提供全堆栈的AI、HPC软件,可支持所有AI框架、600多个HPC应用程序的加速,其中包括所有NVIDIA CUDA-X AI和HPC库、GPU加速的AI框架和软件开发工具,比如支持OpenACC的PGI编译器和性能分析器。而堆栈优化完成后,NVIDIA将为所有主流CPU架构提供加速,包括x86、POWER、Arm。

AMD几年前也开始了这样的尝试,其Radeon开放运算平台ROCm,希望通过CUDA编译代码转换,进一步支持英伟达的 CUDA平行运算平台,开始了在软件平台上对英伟达的追赶。

写在最后

5G、AI都在催生计算场景的多样性和更为丰富的内涵。未来的数据是多样化的,需要通过多种硬件计算组合来应对多种数据类型,谁能挖掘出最优化的算力组合,谁就能让数据发挥出最大价值。异构计算,不仅是解决摩尔定律走入绝境的一种方法,更是未来所需。这就是为什么英特尔、英伟达、AMD纷纷在构建自己的XPU平台。

不过,当三大巨头纷纷端出自己的全家桶时,一个挑战是共通的:进步绝不仅体现在处理性能的提升上,更大的难题在于:如何牢牢抓住应用需求,用极为丰富、灵活的组合给出最优化、最适配的方案?


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8527290.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存