稀磁半导体的介绍

稀磁半导体的介绍,第1张

稀磁半导体(Diluted magnetic semiconductors, DMS)是指非磁性半导体中的部分原子被过渡金属元素(transition metals, TM)取代后形成的磁性半导体。因为一般掺入的杂质浓度不高,磁性比较弱,因而叫做稀磁半导体,或者半磁半导体。因兼具有半导体和磁性的性质,即在一种材料中同时应用电子电荷和自旋两种自由度,因而引起科研工作者的广泛关注,目前尚处于研究阶段。存在的问题集中于稀磁半导体的磁性来源,倘若研究结果与人设想的相同,则必将给计算机领域带来一场新的革命。

CBGA Ceramic Ball Grid Array 陶瓷焊球阵列

CCGA Ceramic Column Grid Array 陶瓷焊柱阵列

CLCC Ceramic Leaded Chip Carrier 带引脚的陶瓷片式载体

CML Current Mode Logic 电流开关逻辑

CMOS Complementary Metal-Oxide-Semiconductor 互补金属氧化物半导体

COB Chip on Board 板上芯片

COC Chip on Chip 叠层芯片

COG Chip on Glass 玻璃板上芯片

CSP Chip Size Package 芯片尺寸封装

CTE Coefficient of Thermal Expansion 热膨胀系数

CVD Chemical Vapor Depositon 化学汽相淀积

DCA Direct Chip Attach 芯片直接安装

DFP Dual Flat Package 双侧引脚扁平封装

DIP Double In-Line Package 双列直插式封装

DMS Direct Metallization System 直接金属化系统

DRAM Dynamic Random Access Memory 动态随机存取存贮器

DSO Dual Small Outline 双侧引脚小外形封装

DTCP Dual Tape Carrier Package 双载带封装

3D Three-Dimensional 三维

2D Two-Dimensional 二维

EB Electron Beam 电子束

ECL Emitter-Coupled Logic 射极耦合逻辑

FC Flip Chip 倒装片法

FCB Flip Chip Bonding 倒装焊

FCOB Flip Chip on Board 板上倒装片

FEM Finite Element Method 有限元法

FP Flat Package 扁平封装

FPBGA Fine Pitch Ball Grid Array 窄节距BGA

FPD Fine Pitch Device 窄节距器件

FPPQFP Fine Pitch Plastic QFP 窄节距塑料QFP

GQFP Guard-Ring Quad Flat Package 带保护环的QFP

HDI High Density Interconnect 高密度互连

HDMI High Density Multilayer Interconnect 高密度多层互连

HIC Hybird Integrated Circuit 混合集成电路

HTCC High Temperature Co-Fired Ceramic 高温共烧陶瓷

HTS High Temperature Storage 高温贮存

IC Integrated Circuit 集成电路

IGBT Insulated Gate Bipolar Transistor 绝缘栅双极晶体管

ILB Inner-Lead Bond 内引脚焊接

I/O Input/Output 输入/输出

IVH Inner Via Hole 内部通孔

JLCC J-Leaded Chip Carrier J形引脚片式载体

KGD Known Good Die 优质芯片

LCC Leadless Chip Carrier 无引脚片式载体

LCCC Leadless Ceramic Chip Carrier 无引脚陶瓷片式载体

LCCP Lead Chip Carrier Package 有引脚片式载体封装

LCD Liquid Crystal Display 液晶显示器

LCVD Laser Chemical Vapor Deposition 激光化学汽相淀积

LDI Laser Direct Imaging 激光直接成像

LGA Land Grid Array 焊区阵列

LSI Large Scale Integrated Circuit 大规模集成电路

LOC Lead Over Chip 芯片上引线健合

LQFP Low Profile QFP 薄形QFP

LTCC Low Temperature Co-Fired Ceramic 低温共烧陶瓷

MBGA Metal BGA 金属基板BGA

MCA Multiple Channel Access 多通道存取

MCM Multichip Module 多芯片组件

MCM-C MCM with Ceramic Substrate 陶瓷基板多芯片组件

MCM-D MCM with Deposited Thin Film Inteconnect Substrate 淀积薄膜互连基板多芯片组件

MCM-L MCM with Laminated Substrate 叠层基板多芯片组件

MCP Multichip Package 多芯片封装

MELF Metal Electrode Face Bonding 金属电极表面健合

MEMS Microelectro Mechanical System 微电子机械系统

MFP Mini Flat Package 微型扁平封装

MLC Multi-Layer Ceramic Package 多层陶瓷封装

MMIC Monolithic Microwave Integrated Circuit 微波单片集成电路

MOSFET Metal-Oxide-Silicon Field-Effect Transistor 金属氧化物半导体场效应晶体管

MPU Microprocessor Unit 微处理器

MQUAD Metal Quad 金属四列引脚

MSI Medium Scale Integration 中规模集成电路

OLB Outer Lead Bonding 外引脚焊接

PBGA Plastic BGA 塑封BGA

PC Personal Computer 个人计算机

PFP Plastic Flat Package 塑料扁平封装

PGA Pin Grid Array 针栅阵列

PI Polymide 聚酰亚胺

PIH Plug-In Hole 通孔插装

PTF Plastic Leaded Chip Carrier 塑料有引脚片式载体

PTF Polymer Thick Film 聚合物厚膜

PWB Printed Wiring Board 印刷电路板

PQFP Plastic QFP 塑料QFP

QFJ Quad Flat J-leaded Package 四边J形引脚扁平封装

QFP Quad Flat Package 四边引脚扁平封装

QIP Quad In-Line Package 四列直插式封装

RAM Random Access Memory 随机存取存贮器

SBB Stud-Bump Bonding 钉头凸点焊接

SBC Solder-Ball Connection 焊球连接

SCIM Single Chip Integrated Module 单芯片集成模块

SCM Single Chip Module 单芯片组件

SLIM Single Level Integrated Module 单级集成模块

SDIP Shrinkage Dual Inline Package 窄节距双列直插式封装

SEM Sweep Electron Microscope 电子扫描显微镜

SIP Single In-Line Package 单列直插式封装

SIP System In a Package 系统级封装

SMC Surface Mount Component 表面安装元件

SMD Surface Mount Device 表面安装器件

SMP Surface Mount Package 表面安装封装

SMT Surface Mount Technology 表面安装技术

SOC System On Chip 系统级芯片

SOIC Small Outline Integrated Circuit 小外形封装集成电路

SOJ Small Outline J-Lead Package 小外形J形引脚封装

SOP Small Outline Package 小外形封装

SOP System On a Package 系统级封装

SOT Small Outline Transistor 小外形晶体管

SSI Small Scale Integration 小规模集成电路

SSIP Small Outline Single-Line Plug Package 小外形单列直插式封装

SSOP Shrink Small Outline Package 窄节距小外形封装

SPLCC Shrinkage Plasitc Leadless Chip Carrier 窄节距塑料无引脚片式载体

STRAM Selftimed Random Access Memory 自定时随机存取存贮器

SVP Surface Vertical Package 立式表面安装型封装

TAB Tape Automated Bonding 载带自动焊

TBGA Tape BGA 载带BGA

TCM Thermal Conduction Module 热导组件

TCP Tape Carrier Package 带式载体封装

THT Through-Hole Technology 通孔安装技术

TO Transistor Outline 晶体管外壳

TPQFP Thin Plastic QFP 薄形塑料QFP

TQFP Tape QFP 载带QFP

TSOP Thin SOP 薄形SOP

TTL Transistor-Transistor Logic 晶体管-晶体管逻辑

UBM Metalization Under Bump 凸点下金属化

UFPD Ultra Small Pitch Device 超窄节距器件

USOP Ultra SOP 超小SOP

USONF Ultra Small Outline Package Non Fin 无散热片的超小外形封装

UV Ultraviolet 紫外光

VHSIC Very High Speed Integrated Circuit 超高速集成电路

VLSI Very Large Scale Integrated Circuit 超大规模集成电路

WB Wire Bonding 引线健合

WLP Wafer Level Package 圆片级封装

WSI Wafer Scale Integration 圆片级规模集成

半导体材料:氧化锌半导瓷 化学式:ZnO 基本概况:ZnO(氧化锌)是一种新型的化合物半导体材料Ⅱ一Ⅵ宽禁带(E =3.37eV)。在常温常压下其是一种非常典型的直接宽禁半导体材料,稳定相是六方纤锌矿结构,其禁带宽度所对应紫外光波长,有希望能够开发出蓝绿光、蓝光、紫外光等等多种发光器件。氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。 晶体数据:针状体根部直径 (µm) 0.1~10 比热 (J/g·k) 5.52 耐热性能 (℃) 1720(升华) 真实密度 (g/cm3) 5.8 表观密度 (g/cm3) 0.01~0.5 粉体电阻率 (Ω·cm) 104~109 介电常数 (实部) 4.5~30 介电常数 (虚部) 20~135 拉伸强度 (MPa) 1.2×104 d性模量 (MPa) 3.5×105 热膨胀率 (%/℃) 4×106 氧化锌空间结构 电镜下的氧化锌半导体材料 制备方法:纯氧化锌是煅烧锌矿石或在空气中燃烧锌条而得。氧化锌结晶是六角晶系,晶格常数α=3.25×10-10m,c=5.20×10-10m。室温下满足化学计量比关系的氧化锌晶体或多晶体中导电载流子极少,具有绝缘体的性能。在空气中经高温处理后,将会因氧的过剩或不足而成为偏离化学计量比关系的不完整晶体,即含有氧缺位或氧填隙锌的非化学计量比结晶,使自由电子或空穴大大增多,氧化锌由白色绝缘体变成青黑色半导体。当在氧化锌中加入适量的其他氧化物或盐类,如Bi2O3、Sb2O3、Co2O3、MnO、Cr2O3、Al2O3或Al(NO3)2等作为添加剂,按一般的陶瓷工艺成型烧结,可以制得氧化锌半导瓷。理论模型:六方纤锌矿结构是理想的氧化锌,对称性C6v-4、属于P63mc空间群,品格常数C=O.521 nm,Y=120 ,a=b=O.325 nm,α=β= 90。。其中c/a较理想的六角柱紧堆积结构的1.633稍小为1.602。其它方向的氧ZnO键长为O.197 nm,只有c轴方向为0.199 nm,其晶胞由锌的六角密堆积与氧的六角密堆积反向套够而成。本文所有的及孙模型都是以超晶胞为基础的模型。我们可以看出,在氧化锌中的配位体是一个三角锥,锥顶原子和中心原子的键长与锥面三个原子的键长相比要稍大,其棱长小于底面边长。所以,ZnO 四面体为晶体中02-一配位多面体,O2-与Zn 配位情况基本相同。 计算结果:利用实验晶格参数对理想的ZnO晶体的电子结构进行了计算。其中包括总体态密度,能带结构,分波态密度。图3,图4,图5为计算结果。用其他理论方法计算的结果与本文计算结果相符合。我们可以从图3,图4,图5中看出,基本上,ZnO的价带可分为两个区域,分别是-4.0~0 eV的上价带区以及一6.0~L4.0 eV的下价带。很显然,ZnO下价带区则主要是Zn3d态贡献的,而上价带区则主要是由02p态形成的。在一18 eV处由02s态贡献的价带部分,与其他两个价带由于之间的相互作用相对较弱,本文不做相关讨论。对于主要来源干Zn4s态贡献的导带部分,从Zn4s态到02p态电子具有明显的跃迁过程,氧位置处的局域态密度的引力中心受到影响向低能级方向移动,这就表明了,理想ZnO是一个共价键较弱,离子性较强的混合键金属氧化物半导体材料。组成:这种半导瓷由半导电的氧化锌晶粒及添加剂成分构成的晶粒间层所组成,其理想结构模型如图。由于每一个氧化锌晶粒和晶粒间层之间都能形成一个接触区,具有一般半导体接触的单向导电性,所以两个晶粒间存在两个相反位置的整流结,一块氧化锌半导瓷片是大量相反放置的整流结组的堆积。 图6:氧化锌半导瓷空间结构氧化锌半导瓷的伏安特性:当外加电压于这种材料时,低电压下,由于反偏整流结的阻挡作用,材料呈高阻状态,具有绝缘性能。当电压高达一定值时,整流结发生击穿,材料电阻率迅速下降,成为导电材料,可以通过相当大密度的电流。图7:氧化锌半导体瓷的伏安特性 作用:氧化锌半导瓷的非线性电压电流关系。利用这种对称的非线性伏安特性可以制成各种电压限幅器、能量吸收装置等,如电力系统的过电压保护装置,特别是由于这类材料低电压下的电阻率高,因而在长期工作电压下漏电流小、发热小,可以做成不带火花间隙的高压避雷器;而高电压下电阻低、残压小,能把过电压限制在更低的水平上,使电网和电工设备的绝缘水平有可能降低,特别是在超高压电网,这一点更为重要。拓展:稀磁半导体材料(Diluted magnetic semiconductors,DMS)稀释磁性半导体简称稀磁半导体(Diluted Magneticsemi Conductors,DMS),是利用3d族过渡金属或4f族稀土金属的磁性离子替代Ⅱ2Ⅵ族、Ⅳ2Ⅵ族、Ⅱ2Ⅴ族或Ⅲ2Ⅴ族等化合物半导体中的部分非磁性阳离子而形成的新型半导体材料,又可称为半磁半导体(Semi Magnetic Semi Conductors,SMSC)材料或半导体自旋电子材料。之所以称为稀磁半导体是由于相对于普通的磁性材料,其磁性元素的含量较少。这类材料由于阳离子替代而存在局域磁性顺磁离子,具有很强的局域自旋磁矩。局域顺磁离子与迁移载流子(电子或空穴)之间的自旋2自旋相互作用结果产生一种新的交换相互作用,使得稀磁半导体具有很多与普通半导体截然不同的特殊性质,如磁性、显著的磁光效应和磁输运性质。稀磁半导体能利用电子的电荷特性和自旋特性,即兼具半导体材料和磁性材料的双重特性。它将半导体的信息处理与磁性材料的信息存储功能、半导体材料的优点和磁性材料的非易失性两者融合在一起,这种材料研制成功将是材料领域的革命性进展。同时,稀磁半导体在磁性物理学和半导体物理学之间架起了一道桥梁。ZnO作为一种宽带隙半导体,激子束缚能较高(60meV),具有温度稳定性好、光透过率高、化学性能稳定,原料丰富易得、价格低廉等优点,并且过渡金属离子易于掺杂,可制备性能良好的稀磁半导体,因而成为目前稀磁半导体材料的研究热点。 国内研究以及原理:近年来,由于1i掺杂的Zn()材料可能同时具有铁电性和铁磁性,国内很多研究者都对它进行了研究。南京大学的宋海岸等制备了Ni、I』i共掺的ZnO薄膜,发现由于Li掺杂引入了空穴,使铁磁性减弱 ]。北京航空航天大学的李建军等制备了I Co共掺的ZnO纳米颗粒,实验发现,当掺杂浓度少于9 时体系的铁磁性会增强,其原因是掺入后形成了填隙原子,电子浓度明显增加,使得束缚磁极子浓度增加,且磁极子之间容易发生重叠,最终导致铁磁耦合作用增强。武汉大学的C W Zou等制备了Mn、Li共掺杂的ZnO薄膜,研究了不同Mn掺杂浓度的ZnO样品。但这些研究中对Li、Mn共掺杂ZnO陶瓷的磁性研究并不常见。 应用现状与前景展望(1)改变组分获得所需的光谱效应通过改变磁性离子的浓度可得到所需要的带隙,从而获得相应的光谱效应。由于其响应波长可覆盖从紫外线到远红外线的宽范围波段,这种DMS是制备光电器件、光探测器和磁光器件的理想材料。在Ⅲ2Ⅴ族宽带隙稀磁半导体GaN中掺入不同的稀土磁性元素可发出从可见光到红外的不同波长的光,加上GaN本身可发紫外光,因此掺稀土GaN材料可发出从紫外到红外波段的光,如在GaN中掺Er可发绿光,而掺Pr可发红光等。1994年Wilson等[24]在掺Er的GaN薄膜中首次观察到1.54μm的红外光荧光。1998年Steckl等采用Er原位掺杂方法首次获得绿光发射[25],掺Er的GaN的另一个重要特性是其温度猝灭效应很弱,这对于制备室温发光器件非常重要。后来红光和蓝光器件相继研制成功,这些都可以作为光通信和光电集成的光源。(2)sp2d交换作用的应用利用DMS的巨法拉第旋转效应可制备非倒易光学器件,也可用于制备光调谐器、光开关和传感器件。DMS的磁光效应为光电子技术开辟了新的途径。利用其磁性离子和截流子自旋交换作用(sp2d作用)所引起的巨g因子效应,可制备一系列具有特殊性质的稀磁半导体超晶格和量子阱器件。这种量子阱和超晶格不仅具有普通量子阱和超晶格的电学、光学性质,而且还具有稀磁半导体的磁效应,因此器件具有很多潜在的应用价值。利用磁性和半导体性实现自旋的注入与输运,可造出新型的自旋电子器件,如自旋过滤器和自旋电子基发光二极管等。(3)深入研究自旋电子学,推动DMS的实用化自旋电子学是目前固体物理和电子学中的一个热点,其核心内容是利用和控制固体,尤其是半导体中的自旋自由度。近年来以稀磁半导体为代表的自旋电子学的研究相当活跃,各国科研机构和各大公司都投入了巨大财力和人力从事此领域的研究。利用具有磁性或自旋相关性质的DMS基材料可制出一类新型器件———既利用电子、空穴的电荷也利用它们的自旋。这些新材料和人造纳米结构,包括异质结构(HS)、量子阱(QW)和颗粒结构一直是一些新型功能的“沃土”———与自旋相关的输运、磁阻效应和磁光效应。自旋电子学可用于计算机的硬驱动,在计算机存储器中极具潜力。在高密度非易失性存储器、磁感应器和半导体电路的集成电路、光隔离器件和半导体激光器集成电路以及量子计算机等领域,DMS材料均有重大的潜在应用。但上述以稀磁半导体为基础的自旋电子器件的研制尚处于起步阶段,距实用化还有很长的路程。自旋电子学与自旋电子学器件研究的深入,将加深DMS机理的研究和理论的探索,推动DMS的实用化过程。(4)室温DMS的研究为了应用方便,需要开发高居里温度(Tc)的DMS材料(高于室温)。室温下具有磁性为磁性半导体的应用提供了可能。扩展更多的掺杂磁性元素或生长更多种类材料来提高DMS材料的居里温度是当前的首要问题。近来Hori等成功掺入5%Mn在GaN中,获得了高于室温的Tc报道表明(Zn,Co)O的居里温度可达到290~380K[26]。Dietl等[6]采用Zener模型对闪锌矿结构的磁半导体计算表明,GaMnN和ZnMnO具有高达室温的居里温度,该计算结果对实验研究提供了很好的理论依据。但是,如何将磁性和半导体属性有机地结合起来仍然是值得进一步研究的问题。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8547808.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存