中科飞测远不如精测电子

中科飞测远不如精测电子,第1张

不是。上海精测电子致力于半导体前道量测检测设备的研发及生产,在光学领域自主开发,而中科飞测是针对集成电路微细结构及变化的OCD测量,两者是不同领域的不同公司,公司估值都在50亿上下,是一个水平线上的。

内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。本文来说说内存的发展历程,顺便对比下内存各阶段之间的区别。

  一、DDR

DDR=Double Data Rate双倍速内存。严格的说DDR应该叫DDR SDRAM,人们习惯称为DDR,部分初学者也常看到DDR SDRAM,就认为是SDRAM。DDR SDRAM是Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。

SDRAM在一个时钟周期内只传输一次数据,它是在时钟的上升期进行数据传输;而DDR内存则是一个时钟周期内传输两次次数据,它能够在时钟的上升期和下降期各传输一次数据,因此称为双倍速率同步动态随机存储器。DDR内存可以在与SDRAM相同的总线频率下达到更高的数据传输率。

与 SDRAM相比:DDR运用了更先进的同步电路,使指定地址、数据的输送和输出主要步骤既独立执行,又保持与CPU完全同步;DDR使用了DLL (Delay Locked Loop,延时锁定回路提供一个数据滤波信号)技术,当数据有效时,存储控制器可使用这个数据滤波信号来精确定位数据,每16次输出一次,并重新同步来自不同存储器模块的数据。DDR本质上不需要提高时钟频率就能加倍提高SDRAM的速度,它答应在时钟脉冲的上升沿和下降沿读出数据,因而其速度是标准 SDRA的两倍。

从外形体积上DDR与SDRAM相比差别并不大,他们具有同样的尺寸和同样的针脚距离。但DDR为184针脚,比SDRAM多出了16个针脚,主要包含了新的控制、时钟、电源和接地等信号。DDR内存采用的是支持2.5V电压的SSTL2标准,而不是SDRAM使用的3.3V电压的LVTTL标准。

DDR内存的频率可以用工作频率和等效频率两种方式表示,工作频率是内存颗粒实际的工作频率,但是由于DDR内存可以在脉冲的上升和下降沿都传输数据,因此传输数据的等效频率是工作频率的两倍。

二、DDR2

DDR2发明与发展:

DDR2/DDR II(Double Data Rate 2)SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2 内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。

此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回想起DDR的发展历程,从第一代应用到个人电脑的 DDR200经过DDR266、DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。

DDR2与DDR的区别:

1、延迟问题:

在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和 DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样 100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。

这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR 200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR 400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。

2、封装和发热量:

DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。

DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。

DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。

DDR2采用的新技术:

除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和Post CAS。

1.OCD(Off-Chip Driver):也就是所谓的离线驱动调整,DDR II通过OCD可以提高信号的完整性。DDR II通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。

2.ODT:ODT 是内建核心的终结电阻器。我们知道使用DDR SDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自己的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。

3.Post CAS:它是为了提高DDR II内存的利用效率而设定的。在Post CAS *** 作中,CAS信号(读写/命令)能够被插到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(Additive Latency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。

三、DDR3

发展

早在2002年6月28日,JEDEC就公布开始开发DDR3内存标准,但从目前的情况来看,DDR2才刚开始普及,DDR3标准更是连影也没见到。不过目前已经有众多厂商拿出了自己的DDR3解决方案,纷纷公布成功开发出了DDR3内存芯片,从中我们仿佛能感觉到DDR3临近的脚步。而从已经有芯片可以生产出来这一点来看,DDR3的标准设计工作也已经接近尾声。

半导体市场调查机构iSuppli猜测DDR3内存将会在2008年替代DDR2成为市场上的主流产品,iSuppli认为在那个时候DDR3的市场份额将达到55%。不过,就具体的设计来看,DDR3与DDR2的基础架构并没有本质的不同。从某种角度讲,DDR3是为了解决DDR2发展所面临的限制而催生的产物。

DDR2与DDR3的区别

针对Intel新型芯片的一代内存技术(但目前主要用于显卡内存),频率在800M以上,和DDR2相比优势如下:

(1)功耗和发热量较小:吸取了DDR2的教训,在控制成本的基础上减小了能耗和发热量,使得DDR3更易于被用户和厂家接受。

(2)工作频率更高:由于能耗降低,DDR3可实现更高的工作频率,在一定程度弥补了延迟时间较长的缺点,同时还可作为显卡的卖点之一,这在搭配DDR3显存的显卡上已有所表现。

(3)降低显卡整体成本:DDR2显存颗粒规格多为4M X 32bit,搭配中高端显卡常用的128MB显存便需8颗。而DDR3显存规格多为8M X 32bit,单颗颗粒容量较大,4颗即可构成128MB显存。如此一来,显卡PCB面积可减小,成本得以有效控制,此外,颗粒数减少后,显存功耗也能进一步降低。

(4)通用性好:相对于DDR变更到DDR2,DDR3对DDR2的兼容性更好。由于针脚、封装等要害特性不变,搭配DDR2的显示核心和公版设计的显卡稍加修改便能采用DDR3显存,这对厂商降低成本大有好处。

目前,DDR3显存在新出的大多数中高端显卡上得到了广泛的应用。

设计规模

一、DDR3在DDR2基础上采用的新型设计:

1.8bit预取设计,而DDR2为4bit预取,这样DRAM内核的频率只有接口频率的1/8,DDR3-800的核心工作频率只有100MHz。

2.采用点对点的拓朴架构,以减轻地址/命令与控制总线的负担。

3.采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。

4.逻辑Bank数量改变。DDR2 SDRAM中有4Bank和8Bank的设计,目的就是为了应对未来大容量芯片的需求。而DDR3很可能将从2Gb容量起步,因此起始的逻辑Bank就是8个,另外还为未来的16个逻辑Bank做好了预备。

5.封装方式改变。DDR3由于新增了一些功能,所以在引脚方面会有所增加,8bit芯片采用78球FBGA封装,16bit芯片采用96球FBGA封装,而DDR2则有60/68/84球FBGA封装三种规格。并且DDR3必须是绿色封装,不能含有任何有害物质。

二、DDR3与DDR2几个主要的不同之处 :

1.突发长度(Burst Length,BL)

由于DDR3的预取为8bit,所以突发传输周期(Burst Length,BL)也固定为8,而对于DDR2和早期的DDR架构系统,BL=4也是常用的,DDR3为此增加了一个4bit Burst Chop(突发突变)模式,即由一个BL=4的读取 *** 作加上一个BL=4的写入 *** 作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断 *** 作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。

2.寻址时序(Timing)

就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2~5之间,而DDR3则在 5~11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0~4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外, DDR3还新增加了一个时序参数——写入延迟(CWD),这一参数将根据具体的工作频率而定。

3.DDR3新增的重置(Reset)功能

重置是DDR3新增的一项重要功能,并为此专门预备了一个引脚。DRAM业界很早以前就要求增加这一功能,如今终于在DDR3上实现了。这一引脚将使 DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有 *** 作,并切换至最少量活动状态,以节约电力。

在Reset期间,DDR3内存将关闭内在的大部分功能,所有数据接收与发送器都将关闭,所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。

4.DDR3新增ZQ校准功能

ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(On-Die Calibration Engine,ODCE)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令后,将用相应的时钟周期(在加电与初始化之后用 512个时钟周期,在退出自刷新 *** 作后用256个时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。

5.参考电压分成两个

在DDR3系统中,对于内存系统工作非常重要的参考电压信号VREF将分为两个信号,即为命令与地址信号服务的VREFCA和为数据总线服务的VREFDQ,这将有效地提高系统数据总线的信噪等级。

6.点对点连接(Point-to-Point,P2P)

这是为了提高系统性能而进行的重要改动,也是DDR3与DDR2的一个要害区别。在DDR3系统中,一个内存控制器只与一个内存通道打交道,而且这个内存通道只能有一个插槽,因此,内存控制器与DDR3内存模组之间是点对点(P2P)的关系(单物理Bank的模组),或者是点对双点(Point-to- two-Point,P22P)的关系(双物理Bank的模组),从而大大地减轻了地址/命令/控制与数据总线的负载。而在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本

电脑)、FB-DIMM2(服务器)之分,其中第二代FB- DIMM将采用规格更高的AMB2(高级内存缓冲器)。

面向64位构架的DDR3显然在频率和速度上拥有更多的优势,此外,由于DDR3所采用的根据温度自动自刷新、局部自刷新等其它一些功能,在功耗方面 DDR3也要出色得多,因此,它可能首先受到移动设备的欢迎,就像最先迎接DDR2内存的不是台式机而是服务器一样。在CPU外频提升最迅速的PC台式机领域,DDR3未来也是一片光明。目前Intel所推出的新芯片-熊湖(Bear Lake),其将支持DDR3规格,而AMD也预计同时在K9平台上支持DDR2及DDR3两种规格。

四、DDR4

DDR4内存峰会

据介绍美国JEDEC将会在不久之后启动DDR4内存峰会,而这也标志着DDR4标准制定工作的展开。一般认为这样的会议召开之后新产品将会在3年左右的时间内上市,而这也意味着我们将可能在2011年的时候使用上DDR4内存,最快也有可能会提前到2010年。

JEDEC表示在7月份于美国召开的存储器大会MEMCON07SanJose上时就考虑过DDR4内存要尽可能得继续DDR3内存的规格。使用 Single-endedSignaling( 传统SE信号)信号方式则表示64-bit存储模块技术将会得到继续。不过据说在召开此次的DDR4峰会时,DDR4 内存不仅仅只有Single-endedSignaling方式,大会同时也推出了基于微分信号存储器标准的DDR4内存。

DDR4规格

因此DDR4内存将会拥有两种规格。其中使用Single-endedSignaling信号的DDR4内存其传输速率已经被确认为 1.6~3.2Gbps,而基于差分信号技术的DDR4内存其传输速率则将可以达到6.4Gbps。由于通过一个DRAM实现两种接口基本上是不可能的,因此DDR4内存将会同时存在基于传统SE信号和微分信号的两种规格产品。

根据多位半导体业界相关人员的介绍,DDR4内存将会是Single-endedSignaling( 传统SE信号)方式DifferentialSignaling( 差分信号技术 )方式并存。其中AMD公司的PhilHester先生也对此表示了确认。预计这两个标准将会推出不同的芯片产品,因此在DDR4内存时代我们将会看到两个互不兼容的内存产品

DDR2 SDRAM一出现就迅速得到服务器、工作站和个人计算机OEM厂商的广泛支持,DDR2存储器具有高数据速率、低功耗以及高密度特点,这些特点也适合当前数字消费电子产品的应用需求,如机顶盒和数码相机等。本文对比分析了DDR2相对传统存储器的性能特点,并介绍了DDR2在数字消费电子产品上的应用机会。

DRAM市场的特点是技术不断提高而需求也持续增长。对这些应用来说,DDR2 SDRAM是一个理所当然的选择,因为它的速度和带宽比DDR SDRAM高很多,DDR2的1.8V工作电压使得它可以比其上一代产品功耗整整低50%。

但是,DDR2的优势决不仅局限于这些应用,DDR2的高密度、高功效和改善的热特性为台式电脑、笔记本电脑和小外形消费电子产品带来了巨大优势。这些优势的利用将依赖于封装和模块技术的不断发展,特别是在消费电子产品领域。这个新兴的市场代表着DRAM工业一个新的前沿应用,它将为那些愿意接受挑战以满足新要求的商家带来大量机会。

向DDR2转换

服务器、工作站和个人计算机等传统DRAM市场正在快速向DDR2转换。英特尔公司已经宣布其未来的所有芯片组将支持DDR2,其它的主要芯片组供应商看起来也将步英特尔的后尘。今春英特尔开发商论坛和存储器生产商论坛所开展的活动使那些希望向DDR2加速转变的人受到鼓舞,DRAM市场上的大部分主要供应商提供经过英特尔验证的DDR2产品。半导体生产设备从8英寸到12英寸晶圆工艺的转变有助于提高产品良率,进而提高DRAM的产量。对于1Gb DRAM器件来说,在单一芯片上既支持DDR1又支持DDR2架构的电路技术很关键,它使得向DDR2的转换更加容易。

DDR2 SDRAM的优势

DDR2 SDRAM的数据传输速率最高为533Mbps,这是DDR266的两倍。除了在原始带宽方面的一些提高外,它还提高了系统的性能和功效,并方便系统设计。这些改进可以分成以下四大类:

4位预取架构 采用DDR2的4位预取(Prefetch)架构,DDR2 SDRAM作为外部总线每个时钟从存储器单元阵列读/写的数据量是原来的四倍,而且其工作频率比内部总线频率快四倍。DDR2 SDRAM、DDR SDRAM 和SDR SDRAM与工作频率为100MHz的DRAM之间的比较结果如下图所示。

片上端接 DDR2的其它特性为主板设计工程师带来了好处,例如利用DDR2的片上端接(ODT)来简化DQ总线设计。在DDR2 SDRAM中,端接寄存器(termination register)就实现在该DRAM芯片之中,而不是安装在主板上(见下图)。DRAM控制器可以为每个信号设定端接寄存器的开或关,这些信号包括数据I/O 、差分数据选通信号和写数据屏蔽。利用ODT就不需要Vtt发生器或Rtt电阻,而且能降低多重反射,提高信号完整性并增加时序裕量。

片外驱动器(OCD)校准 OCD校准改进了DDR2 SDRAM的信号完整性。其做法是:设定该I/O驱动器的电阻来调整该电压,补偿上拉/下拉电阻;通过将DQ-DQS偏移降到最低来改进信号完整性;控制过冲和下冲来改进信号质量;通过I/O驱动器电压校准可以修正不同DRAM供应商之间的工艺差异。前置CAS和附加延迟 在一个前置CAS *** 作中,一个CAS信号(读/写命令)可以在RAS信号输入之后成为下一个时钟的输入。该CAS指令可以在DRAM一侧保持,并在附加的延迟(0、1、2、3和4)之后执行。这样简化了控制器设计,因为它可以避免指令总线上的冲突。而且,采用一个简单的指令序列还可以提高指令和数据总线的效率。由于在读/写指令之间不存在“气泡”(bubble)或空隙周期,因此实际的存储器带宽也得到提高。最后一点,DDR2采用细间距球栅阵列(FBGA)封装可以减小系统尺寸,并提高信号完整性。这种技术的一个变体是新型的堆叠式FBGA(sFBGA),它增加了各模块之间的空气流动空间从而提高了热性能和可靠性。这类符合行业标准、兼容JEDEC的创新是优化DDR2优势的关键。 随着1GB的DDR2小外形双列直插存储器模块(SO-DIMM)即将问世,笔记本电脑也将利用到DDR2的低功率、高密度、高性能和小形状因子等优势。由于因特网的发展和无线通信性能的提升,蜂窝手机和PDA等其它移动应用也逐渐开始处理更大量的数据、声音和视频流,这些应用未来也可能应用到DDR2器件来实现性能的提升。

这个市场上的DRAM产品均基于SDR和DDR器件架构,并提供移动RAM特定功能,如:部分阵列自刷新,即只刷新一部分特定的存储器单元阵列以降低自刷新电流;温度补偿自刷新,即通过调整刷新频率来适应温度的变化,从而可以起到降低自刷新电流的类似作用;深度功率下降(Deep Power Down),即切断内部电压以实现最低功耗。 随着DRAM的密度、速度和功效的继续改进,需要DRAM来处理日益复杂功能的消费产品也会有相应的增加,灵活性和多样性是这类应用的关键。一种规格适合所有应用的策略在传统计算系统领域得到很好应用,但以消费者为中心的数码照相机、数字电视机、硬盘录像机和个人视频录像机等产品需要有一些新的改变。

消费电子产品市场将可能坐上向DDR2转变的末班车,DRAM供应商已经在探索开发这些市场的途径。根据消费产品市场特点,很显然有必要提供各种各样的封装选择,如TSOP、FBGA和LQFP。适合在客户自己的多芯片封装(MCP)或系统级封装(SiP)设计上实现的“裸片”产品是一种重要的设计考虑。在新兴市场上能提供各种密度的产品也是非常重要的,例如64Mb、128Mb和256Mb,并且有16位和32位两种结构。 消费应用的需要具有多样化考虑,以汽车导航系统为例,这些系统不仅需要宽带数据传输能力,而且还必须在很宽的环境温度下工作。这需要存储器的工作范围为-40到85°C,而标准DRAM的工作范围为0到70°C。而数字广播、机顶盒和数字电视全是宽带应用,常规的DDR SDRAM器件可以达到3.2GBps的数据传输率,因而能满足标准清晰度数字电视和高清数字电视的需求。

类似DVD/HD录像机这样的消费产品正在从根本上改变家庭电视机的作用。这些产品可以获益于DDR2的更高存储器容量和速度。DDR和DDR2技术的正确应用将有助于这个市场的成长,而且DRAM市场有能力轻松地适应这些应用不断发展的需求。

图像质量的改善和微型化推动了数字摄像机的发展。数字摄像机中的视频处理可以用×32位I/O SDRAM或DDR SDRAM来优化,这是“裸片”设计用在客户自己的SiP方案的另一个重要领域。 最后一点,提供接近电影图像质量的先进图形技术也许是DRAM发挥其优越性能的另一个领域。由于因特网的持续发展和通信线路的性能提高,数字消费电子产品开始处理更大量的数据和声音。这些环境增加了对超快、高容量DRAM的需求,如DDR2、RDRAM和XDR。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8557320.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存