单晶材料的单晶制备方法:

单晶材料的单晶制备方法:,第1张

此法为最常用方法,是从结晶物质的熔体中生长晶体。适用于光学半导体,激光技术上需要的单晶材料。

(一)晶体生长的必要条件。

根据晶体生长时体系中存在的——由熔体(m)向晶体(C)自发转变时——两相间自由焓的关系:Gm(T)>Gc(T),即△G=Gc(T)-Gm(T)≈△He-Te△Se-△T△Se=△T△Se<0。结晶时, △Se>0,只有△T<0 。熔体单晶体生长的必要条件是:体系温度低于平衡温度。体系温度低于平衡温度的状态称为过冷。△T的绝对值称为过冷度。过冷度作为熔体晶体生长的驱动力。一般情况:该值越大,晶体生长越快。当值为零时,晶体生长停止。

(二)晶体生长的充分条件

晶体生长是发生在固-液(或晶-液)界面上。通常为保证晶体粒生长只需使固-液界面附近很小区域熔体处于过冷态,绝大部分熔体处于过热态(温度高于Te )。已生长出的晶体温度又需低于Te。就是说整个体系由熔体到晶体的温度由过热向过冷变化。过热与过冷区的界面为等温区。此面与晶体生长界面间的熔体为过冷熔体。且过冷度沿晶体生长反方向逐渐增大。晶体的温度最低。这种由晶体到熔体方向存在的温度梯度是热量输运的必要条件。热量由熔体经生长面传向晶体,并由其转出。

晶体生长的充分条件:(dT/dz)c一定、(dT/dz)m为零时,整个区域熔体处于过冷态,晶体生长速率最大。对于一定结晶物质,过冷度一定时,决定晶体生长速率的主要因素是晶体与熔体温度梯度(dT/dz)c与(dT/dz)m的相对大小。只有晶体温度梯度增大,熔体温度梯度减少,才能提高晶体生长速度。需指出:晶体生长速度并非越大越好,太大会出现不完全生长,影响质量。

(三)晶体生长方法

1 提拉法:提拉法适于半导体单晶Si、Ge及大多数激光晶体。

工艺流程:

1)同成分的结晶物质熔化,但不分解,不与周围反应。

2)预热籽晶,旋转着下降后,与熔体液面接触,待熔后,缓慢向上提拉。

3)降低坩埚温度或熔体温度梯度,不断提拉籽晶,使其籽晶变大。

4)等径生长:保持合适的温度梯度与提拉速度,使晶体等径生长。

5)收晶:晶体生长所需长度后,拉速不变,升高熔体温度或熔体温度不变,加快拉速,使晶体脱离熔体液面。

6)退火处理晶体。

2 坩埚下降法:

在下降坩埚的过程,能精密测温,控温的设备中进行。过热处理的熔体降到稍高于凝固温度后,下降至低温区,实现单晶生长,并能继续保持。

3 泡生法:

过热熔体降温至稍高于熔点,降低炉温或冷却籽晶杆,使籽晶周围熔体过冷,生长晶体。控制好温度,就能保持晶体不断生长。

4 水平区熔法:

盛有结晶物质的坩埚,在带有温度梯度的加热器,从高温区向低温区移动,完成熔化到结晶过程。

以上四种晶体生长使用的坩埚,应具备:熔点高于工作温度200℃,不与熔体互熔起化学反应,良好的加工性及抗热震性,热膨胀系数与结晶物质相近,常用铂、铱、钢、石墨、石英及其它高熔点氧化物。 以水、重水或液态有机物作溶剂的溶液中,可生长完整均匀的大尺寸单晶体。

(一)晶体生长基本原理

1 晶体生长的必要条件:一定温度条件下,溶液的浓度大于该温度下的平衡浓度(即饱和浓度)称过饱和,其大于的程度称过饱和度,它是溶液法晶体生长的驱动力。

2 晶体生长的充分条件:把溶液的过饱和状态控制在亚稳定区内,避免进入不稳定或稳定区。

(二)晶体生长方法

1 降温法:利用不断降温并维持溶液亚稳过饱和态,以实现晶体不断生长的方法。

2 流动法:控制饱和槽和生长槽间温差及流速并使其处于亚稳过饱和态。维持晶体不断生长。

3 蒸发法:利用不断蒸发溶剂,并控制蒸发速度,维持溶液处于亚稳的过饱和状态,实现晶体的完全生长。

4 电解溶剂法:利用电解原理,不断从体系中去除溶剂,以维持溶液过饱和状态,实现晶体不断生长。关键是控制电解电流,即溶剂电解速度保持体系处于亚稳区。

5 凝胶法:两物质的溶液通过凝胶扩散,相遇,经化学反应,生成结晶物质,并在凝胶中成核,长大。 (一)基本原理

高温溶液法生长的结晶物质,须在高温下,溶于助溶剂,形成过饱和溶液。因此,助溶剂选择,溶液相关系的确定,是溶液生长晶体的先决条件。

助溶剂应具备的条件:

1)对结晶物质有足够大溶解度,并在生长温度范围内,有适宜的溶解度温度系数。

2)与溶质的作用应是可逆的,形成的晶体是唯一、稳定的。

3)具有尽可能高的沸点及尽可能低的溶点。

4)含有与结晶物质相同的离子。

5)粘滞性不大,利于溶质扩散和能量运输。

6)无毒、无腐蚀性。

7)可用适当溶液或溶剂溶解。

(二) 晶体生长方法

1 缓冷法及改进技术

以0.2-5℃/h的速度,使处在过饱和态的高温溶液降温,先慢后快,防止过多成核。温度降到出现其它相或溶解的温度系数近于0时,较快速降温。并用适当的溶剂溶掉凝固在晶体周围的溶液,便得晶体。

改进技术

(1)坩埚局部过冷(2)采用复合助熔剂(3)变速旋转坩埚(4)刺破坩埚以利于分离。

2 助溶剂挥发法:恒温下借助助溶剂的挥发,使溶液保持亚稳定过饱和态,以保持晶体生长。

3 籽晶降温法:引入籽晶后,靠不断降温维持溶液的亚稳定过饱和度,保持晶体不断生长。

晶体是十分奇妙、美丽而又用途巨大,而自然界中天然形成的晶体多含有大量的缺陷,从而影响到它的应用。在实验室中,采用精巧的设备,严格设定晶体生长所需的温度、气氛和组分,通过严格控制的条件可以生长出符合需要的高质量晶体。 (一)基本原理

利用运输反应来控制反应的进行,其生成物必须是挥发性的,且要有唯一稳定的固体相(所希望的)生成,ΔG→0?反应易为可逆,平衡时,反应物与生成物有足够的量。

(二) 晶体生长方法

1 升华法

将固体顺着温度梯度通过晶体在管子的冷端从气相中生长的方法。

即:在高温区蒸发原料,利用蒸气的扩散,让固体顺着温度梯度通过晶体在冷端形成并生长的方法。

固→气→固常压升华

常压升华(P>1 atm):As、P、CdS

减压升华(P<1 atm):雪花、ZnS、CdSe、HgI2

2 蒸气运输法

在一定的环境相下?利用运载气体来帮助源的挥发和运输?从而促进晶体生长的方法。通常采用卤素作运输剂。在极低的氯气压力下观察钨的运输?发现在加热的钨丝中,钨从较冷的一根转移到较热的一根上。

冷端:W+3Cl2↹WCl6

W以氯化物的形式挥发;热端、分解、沉积出W,规则排列,生长出单晶体。此法常用来提纯材料和生长单晶体。不仅可以生长纯金属单晶,也可用于生长二元或三元化合物。如:ZnIn2S4、HgGa2S2、ZnSiP2。

3 气相反应生长法让各反应物直接进行气相反应生成晶体的方法。成为工业上生产半导体外延晶体的重要方法之一,常用于制膜,如TiC、GaAs。

目前人类科技的镍基单晶材料共有五代。

(1)硅的主要来源是石英砂(二氧化硅),硅元素和氧元素通过共价键连接在一起。因此需要将氧元素从二氧化硅中分离出来,换句话说就是要将硅还原出来,采用的方法是将二氧化硅和碳元素(可以用煤、焦炭和木屑等)一起在电弧炉中加热至2100°C左右,这时碳就会将硅还原出来。化学反应方程式为:SiO2 (s) + 2C (s) = Si (s) + 2CO (g)(吸热) (2)上一步骤中得到的硅中仍有大约2%的杂质,称为冶金级硅,其纯度与半导体工业要求的相差甚远,因此还需要进一步提纯。方法则是在流化床反应器中混合冶金级硅和氯化氢气体,最后得到沸点仅有31°C的三氯化硅。化学反应方程式为:Si (s) + 3HCl (g) = SiHCl3 (g) + H2 (g)(放热) (3)随后将三氯化硅和氢气的混合物蒸馏后再和加热到1100°C的硅棒一起通过气相沉积反应炉中,从而除去氢气,同时析出固态的硅,击碎后便成为块状多晶硅。这样就可以得到纯度为99.9999999%的硅,换句话说,也就是平均十亿个硅原子中才有一个杂质原子。 (4)进行到目前为止,半导体硅晶体对于芯片制造来说还是太小,因此需要把块状多晶硅放入坩埚内加热到1440°C以再次熔化 。为了防止硅在高温下被氧化,坩埚会被抽成真空并注入惰性气体氩气。之后用纯度99.7%的钨丝悬挂硅晶种探入熔融硅中,晶体成长时,以2~20转/分钟的转速及3~10毫米/分钟的速率缓慢从熔液中拉出:探入晶体“种子” 长出了所谓的“肩部” 长出了所谓的“身体” 这样一段时间之后就会得到一根纯度极高的硅晶棒,理论上最大直径可达45厘米,最大长度为3米。以上所简述的硅晶棒制造方法被称为切克劳斯法(Czochralski process,也称为柴氏长晶法),此种方法因成本较低而被广泛采用,除此之外,还有V-布里奇曼法(Vertikalern Bridgman process)和浮动区法(floating zone process)都可以用来制造单晶硅。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8594752.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存