我需要被科普,谁来推荐高深的科普书给我看。

我需要被科普,谁来推荐高深的科普书给我看。,第1张

爱因斯坦相对论

第一章 相对论

人类对宇宙的认识在相对论出现后有了很大变化。当19 年,爱因斯坦发表相对论的时候,世人都以为他是个疯子,即使在今天,依然有包括众多物理学家在内的学习相对论的人不能很好的领悟它,相对论真的那么难吗,当你看完下面这篇不到一千字的短文,或许会惊呼“相对论原来这么简单,呵呵,我难道已经胜过那些专家啦。”

废话少说,我们开始吧,在这里我不会讨论相对论任何公式,而主要集中在它使众多人迷失方向的问题上。

让我们来看下面这个例子:在一列奔驰的火车中,此时,你正坐在火车里,你的伙伴拿着一个手电筒,把它对向天花板,打开手电.......一瞬间,光已竖直射到了天花板上,是不是。

那好,现在让我们换一个角度,你现在在火车外的平地上,看着你的伙伴在这列奔驰的列车内做这个动作,即将光射向他正上方的天花板,不过这时,你在车外看到的将是如图B这样的景象。因为火车在前进,在光从发出到射中天花板,火车已向前进了一段距离,因此,你在陆地上看到的情况是光斜着射了上去。

有没有问题,仔细想清楚这两个现象,你可别问我怎么没见过这种情况,废话,现实当中火车的速度跟光速哪有的比,但若是火车的速度接近光速,那么光斜射上去就很明显啦。有点糊涂的话可以先把光换做常见的东西,比如向上扔的石子,在火车内外观察,肯定会看到这两种现象吧?前面有关的描述一定要想清楚呀,别含糊。这个例子可是你能否突破自我思维屏障的关键。

好,我们现在用最简单的公式来分析一下,即用路程=时间*速度(S=VT),两种观察下路程肯定是后一种长是吧。接下来看看时间和速度,千万不要忘记光以石子有一点不同的是,光速是恒定不变的,不管你的参照物是火车还是地面,真空中的光速都是一样的,那么这意味着什么呢,S=VT,路程变长了,速度不变......天!怎么回事(你大惊失色),时间变啦,不可能。这是同一个事件,仅仅是观察点不同,时间怎么会变,一定那里搞错了,好吧,你就好好研究吧。我希望你能够好好的把这个现象在自己的脑海中描绘清楚,因为只有你自己在这里动了脑筋,你对后面提到的一些现象才能明白,也才会对我继续要说的话感兴趣。

............

呵呵,研究出来了吗?也许你宁愿要找出证据证明光速可变,也不愿承认时间变了,毕竟,时间在人们的脑海中是那样永恒,过去的,永远不能回环。不错,在现实中我们从没感到过有时间差异的现象,那当然,我说过我们人类目前的速度从来没达到过可以跟光速相比的程度,而要有明显的相对时间变化,物体的速度必须接近光速。每秒十几公里的人造卫星跟每秒三十万公里差的太远啦。

我要指出的是,正是因为我们很多人的思维无法跳出感觉器官带给我们的一些错觉,才会使包括宇宙物理学家在内谈论相对论的人,一不留神就会说出一个违背相对论基本思想的错误。好!现在你相信时间是会变的了吗?但事实上是否相信只是第一步,关键是你能否通过上面这个例子用相对的时间观去看待发生的每一个事件。知道吗,当初我终于明白相对论的时间观的时候,才猛然间发现我们的宇宙尽是那样美妙,充满了想象中的古怪离奇,而看待日常的一切都似乎是从一个高度向下看那样的感觉,这感觉真是好极啦。

我们来看一些有趣的例子,记不记得以前你看过的科幻小说中总有这样的情况,几个人坐着飞船离开了地球,当他们回来时,地球已经过了三千年了,而他们依然年轻。很明显小说中的这些情节都用到了相对的时间观,我们来分析一下吧。

现在我们乘上一艘光速飞船远离地球,那么在地球上的人观察我们,跟前面那列火车一样,即使我们做一个用手电照天花板的动作,地面上的人会发现这束光可能会走的很慢很慢,过很久很久才能射在天花板上,其实,他们看待飞船中的我们的任何动作都是异常的缓慢,而对我们来说,光射中天花板只是一瞬间的事。这就产生了一个现象,我们在飞船上五分钟做的事,地球上观察,就像看电影慢镜头一样,用了整整一天。因此飞船上一天等于地球上一年的说法诞生啦。呵呵,你是不是很想做这样的飞船,可以比别人活的更长。我告诉你,你的如意算盘打空啦,想一想,用我们刚才学到的时间相对性的知识,有没有觉得什么不对头的地方。

你已经相信了时间相对可变的真理,下一步我希望能起到引导你学会用正确的时间观来勾画我们的宇宙,我们继续分析飞船的例子。

首先要明确的是,现象确时如此,地面上的人会觉得飞船内的动作慢的多,像是电影慢镜头。

可是你有没有反过来想想,光速远离地球飞行的飞船,其内的人看地球也是已光速相对运动的,现在的情况是他看你是慢镜头,你看他也是慢镜头,到底谁更慢。

问题的实质是速度,两者有近乎光速的相对速度,当两者保持这种速度的时候,确实会觉得对方生理总比自己要慢很多,可是一但一方的速度慢下来,或者更准确的说,当我们双方的速度在不断接近的时候。比方说飞船减速要飞回地球啦,那么在它减速过程中,我们地面上的人又会像看电影快像一般,猛然间一个船员的胡子变的老长,一个家伙在我们一眨眼间吃光了他的晚餐,总之船员们的动作快的出奇。反之,船上的人看我们也是一样,这是因为在高速运动中,时间被拉长了,所以高速运动的物体上的一切都显的缓慢,而在飞船减速过程中,原本被拉长的时间不断追上来,产生了一种时间压缩的感觉。当地球以飞船的相对速度为零时,地面上的人和船员的时间相对性消失了,他们看起来已没什么不同,大家的生命钟走了同样的长度。

众多科幻小说家在这里都犯过错误,他们真的以为飞船里的人会活的更久,他们愿意这样想,因为那样的小说更吸引读者。其实船上的人新陈代谢慢只是我们的时空间带给我们的错觉,如果我们永不和飞船中的人谋面错觉将会一直持续下去,但一但大家又坐在一起,那我们跟他们还是一样老。宇宙事实上还是很公平的,你幼年时的孪生兄弟,不管日后跟你相隔多少光年,他呆的星球跟你呆的相对速度有多少,当你们碰面时,依然跟你是同样的年龄。而在你们分别的日子里,你们会有很多时感到对方比你要衰老的慢。

好了,相对论的问题我们讨论到这,现在,如果你已能用前面所学的知识,去勾画宇宙,那将和爱因斯坦发表相对论时脑中的宇宙因已没什么不同,大家现在都是以相对的时空观去联想宇宙啦。你做到了吗?打开你的思维,用相对的时间观在你的脑海中去描绘我们的世界,我们的宇宙,那才是一个更加真实的世界。也是我们探索宇宙终极的秘密所必需的能力。

下面一章要轻松的多,如果你已经想通了相对时间观,那么下面的多维空间将是很容易应付的。欢迎参观

第二章 多维空间

科幻小说中另一个常见的说法是有关多维空间的。什么是维,我们的世界可以说成是由长宽高组成的三维世界,这当中长宽高就是维,那么除了长宽高以外还有第四维吗,有一种说法是加上时间,把时间算做第四维,但今天我们要讨论的多维空间不包括时间,而是实实在在的表示空间位置坐标的第四维。

为了说清楚四维空间对我们的影响,我们先来设计四种生物,线虫、面虫、人类和四维生物。

从我们人的角度来说,空间可用一个XYZ三条互相垂直的坐标轴表示的坐标系来表示我们空间的位置,而我们设计的第一种一维生物--线虫,它只能沿着其上的一条直线做前后移动,它只能看见它前进道路上前方或后方的物体,面虫要好一些,能看到它所处的平面上四面八方的物体,而如果我们这些三维生物正好出现在面虫所在的平面上,它能看见我们。但如果此时,我们用力一跳,脱离了这个平面,面虫定会大吃一惊,它不知道我们去了哪,在它看来,一下子我们整个形体都消失了,记住面虫的感觉器官是二维的,它无法想象我们通过跳跃改变第三维坐标这种事情。不过面虫还可以捉弄线虫,从它眼前消失,或又突然出现,而我们则可以做出许多令这两种生物都无法想象的事情。但如果存在四维生物呢,它会从我们眼中忽然消失,当我们目瞪口呆之时,它却暗暗好笑,为什么我们只会傻乎乎的在三维坐标中寻找它,而不会移动一下第四维的坐标位置,没办法啊,我们三维的大脑,是无法感知第四维的存在,因而也就自然不能明白何以四维生物能够自由的消失,再出现。

虽然我们无法感知四维空间,但就像线虫和面虫那样,这并不意味着我们感知不到的第四维不存在,而人类日后若想在宇宙间能够在可接受的时间内来往于恒星之间,第四维是必须要有的,因为我们知道三维空间中的极限速度就是光速。

现代科学研究表明,虫洞很有可能存在,所谓虫洞,可以认为是一条连接两个时空地带的第四维空间走廊。如果我们的飞船从虫洞的一头进去,出来时,可能已远在几十或几百光年之外。这使人类在不远的将来能够向银河系深处深险提供了可能。可以这样来形容虫洞起的作用。来看图G中纸上的两个点,一点到另一点的最近路程是联系两点的一条直线,是吗?事实上,因为这是一张纸,纸平面是二维的,只有长和宽。对于我们这些三维生物有更好的办法,比方说把纸对叠,令两点贴在一起,这样它们的距离就近多了,但我们在对折纸这个动作中,至少要把纸的半边竖起来,在压下去,这只有在三维空间中完成,二维世界中是做不到的,因此,线虫和面虫都无法想象也不可能做这个动作。同样,地球到木星的距离,我们在三维空间中看来,就像是图G中A到B的直线长度,可是如果存在第四维,或许就能把三维空间做一个对叠,使两点间的距离近多了,也许一瞬间,我们就从地球到了木星。这个动作我们也无法想象,因为我们只是三维的。但就像前面说的,我们感知不到,并不意味着它就不存在。

现在的一些研究报告甚至认为,虫洞其实无处不在,只是它们太小,都是纳米级的,所以我们无法看到,如果能够将虫洞放大,大到能令飞船进入,并且能预测虫洞出口的位置,那么我们的宇航时代就真正开始了。

从讲相对论到现在,我竭尽全力的想说清楚一个问题,我们要真正认识我们的宇宙,必须跳出感觉器官传递给我们的世界形式的框框,真实的世界并非只是我们眼中看到的,事实上,在相对论出现后,我们的感官大大限制了我们对宇宙的深层认识。我们再也不能依靠感觉器官来验证观点,恰恰相反,许多时候正是感觉欺骗了我们。当年相对论之所以只有极少数的人能够理解,就是因为人类不敢反对自己的感觉器官带来的错觉。从突破自我的角度来说,爱因斯坦真是太伟大啦,他是第一个敢不相信自己感觉的人,要知道,在光速不变被证实后,许多情况明摆着只有时间改变才能解决,就要我们第一章举的手电的例子一样,但是谁敢相信时间是会变的,人们几千万年来感觉到的最永恒的时间竟然也会变化。

如果你已经认可了光速不变,相对论和多维空间的存在,那么,我们现在就可以一起去探索宇宙根源的秘密了,欢迎参观下一章。

第三章 星海迷茫

是大爆炸还是缓变生长?

大爆炸宇宙理论”是关于宇宙形成的最有影响的一种学说,英文说法为BIG BANG,也称为“大爆炸宇宙论”。大爆炸理论诞生于20世纪20年代,在40年代得到补充和发展,直到50年代,人们才开始广泛注意这个理论。“大爆炸宇宙”学认为:如果宇宙是膨胀的,那么,昨天的宇宙应该比今天的宇宙更小,物质也更密集一些。所以,在宇宙的早期,可能是一种非常密集的状态。那时候物质密度非常之高,完全不同于我们今天看到的星空世界。 沿着这条线索来研究宇宙中物性的演化历史,称为“大爆炸宇宙”学。目前比较盛行的是“大爆炸宇宙”学。

但我认为:“大爆炸宇宙”学说是很狭隘的。爆炸点之外难道就不是宇宙?这就和说无穷大有边界一样。一个逻辑的问题:装着宇宙的时空是什么?难道不也是宇宙?

质疑(1):“大爆炸理论”无法回答现在的宇宙在大爆炸发生之前到底是什么样子?或者确切地解释清楚发生这次大爆炸的原因是什么?

质疑(2): 如果“大爆炸理论”是正确的,那么这个空间里所有的物质应该生于大爆炸之后,这是个因果关系。虽然爱因斯坦的相对论原则上不需有绝对的时间和空间,但是如果宇宙有一个起源,它就有一个绝对时间的原点,破坏了时间的相对性,所以这个因果律便是一个绝对的定律。最近美国的哈勃太空望远镜观测到一些现象,显示这个绝对的因果律出了问题。也就是说宇宙可能没有起源,就像相对性的空间一样,时间也是没有原点,时间也不是绝对的。

质疑(3):自从“大爆炸宇宙”理论被提出来以后,大多数天文学家都接受了“大爆炸宇宙”学说的基本思想。特别是许多天文学家都认为:“大爆炸宇宙”有许多相关的证据,所以,有些科学家们也就不去想什么了。为什么我们不去想一想:天体物理的许多问题还不能得到有效的解释?

质疑(4):哈伯太空望远镜的观测显示,如果宇宙真是由大爆炸所造成的,那么爆炸距现在的时间是小于很多老星球的年龄。最老星球的年龄可达一百六十亿年,但观测显示爆炸的时间顶多是一百二十亿年前而已。这个发现最近在英国的自然杂志发表,引起天文物理界莫大的震撼。

如果一定要用“大爆炸”宇宙理论解释黑洞现象,就显得非常困难,换个思路,如果我们换一种其他的方法来解释宇宙的现状,可能就会好一些。

     经过多年的发展,无数材料科学家的努力,我国的材料科学已经得到了很大的发展。我国在材料科学的某些领域,已经处于世界领先水平。比如半导体化合物领域、超导材料领域。

一是,半导体化合物技术领域

     我国在半导体化合物领域中的研究突破,主要是来自于云南大学以及英诺赛科的研究突破。云南大学在半导体化合物领域中的突破,主要是云南大学材料与能源学院自主研发的硫化铂材料。无论是稳定性,还是性能表现,硫化铂材料都要优于石墨烯碳基芯片。除了这项优势之外,与传统的硅基芯片相比,硫化铂材料的极限性能要高出好几倍。云南大学在硫化铂材料上的研究突破,再加上我国掌握的28纳米制程技术,我国有望在高端制程芯片领域实现自主化量产。这一系列技术的突破,使得我国在半导体化合物领域的研究中,不断取得更多的进展。

二是,超导材料领域

     超导体在信息和武器领域的有着非常重要的应用前景。经过多年的发展,我国在高性能超导技术领域已经取得了数十项发明专利。这些研究成果的取得,填补了我国高性能低温超导线材技术的空白。仅凭这个领域的研究,我国在超导材料研究领域,一下子赶超了西方一些发达国家。

    我国在超导研究技术中的突破,主要是来自于复旦大学研制出的已知最高导电率的外尔半金属材料-砷化铌纳米带。这种材料的特色是在室温下也具有高导电性。并且这种材料的导电率是通薄膜的百倍,更是石墨烯材料的千倍。

    以上两种技术,只是一个例子而已。我国在纳米材料等领域也具有非常重要的突破。希望,我国可以不断在更多的领域实现突破。

1879 年,美国物理学家霍尔在研究金属的导电机制时发现,带电粒子(例如电子)在磁场中运动时会受到洛伦兹力的作用发生偏转,那么在磁场中的电流也有可能发生偏转。当电流垂直于外磁场通过半导体时,载流子发生偏转,在导体两端堆积电荷从而在导体内部产生电场,其方向垂直于电流和磁场的方向。当电场力和洛伦兹力相平衡时,载流子不再偏转。而此时半导体的两端会形成电势差。

其中运动电荷在磁场中所受到的力称为洛伦兹力,即磁场对运动电荷的作用力。我们在中学都学习过左手定则的方法,将左手掌摊平,让磁感线穿过手掌心,四指表示正电荷运动方向,则和四指垂直的大拇指所指方向即为洛伦兹力的方向。但须注意,运动电荷是正的,大拇指的指向即为洛伦兹力的方向。反之,如果运动电荷是负的,仍用四指表示电荷运动方向,那么大拇指的指向的反方向为洛伦兹力方向。

而载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。霍尔的发现后来被称为“霍尔效应”,这个电势差也被称为霍尔电势差。

简单来说,霍尔效应它定义了磁场和感应电压之间的关系。当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个横向的作用力,从而在导体的两端产生电压差

虽然这个效应多年前就已经被人们知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器,广泛应用于电力系统中。

霍尔效应示意图,作者Peo

人们按照霍尔效应开发的各种霍尔元件被广泛应用于精密测磁、自动化控制、通信、计算机、航空航天等工业部门和国防领域。

按经典霍尔效应理论,霍尔电阻RH (RH=U/I=K. B/d= B/nqd) 应随B连续变化并随着n (载流子浓度)的增大而减小,但是到了 1980 年,著名物理学家冯·克里津从金属-氧化物-半导体场效应晶体管(MOSFET)发现了一种新的量子霍尔效应。他在硅MOSFET管上加两个电极,再把这个硅MOSFET管放到强磁场和极低温下,发现霍耳电阻随栅压变化的曲线上出现了一系列平台,与这些平台相应的霍尔电阻Rh=h/(ne2),其中n是正整数1,2,3……。也就是说,这些平台是精确给定的,是不以材料、器件尺寸的变化而转移的。它们只是由基本物理常数h(普朗克常数)和e(电子电荷)来确定。

这被称为整数量子霍尔效应,后来科学家还发现了分数量子霍尔效应。

当时,物理学者认为除了夸克一类的粒子之外,宇宙中的基本粒子所带的电荷皆为一个电子所带的电荷-e(e=1.6×10-19库伦)的整数倍。而夸克依其类别可带有±1e/3或±2e/3电荷。夸克在一般状况下,只能存在于原子核中,它们不像电子可以自由流动。所以物理学者并不期待在普通凝体系统中,可以看到如夸克般带有分数电子电荷的粒子或激发态。

但是在1982年,华人科学家崔琦和史特莫在二维电子系统中现了分数化的霍尔电阻平台。一开始是发现了?和?两个平台。之后他们制造出了更纯的样品, 更低的温度, 更强的磁场. 85mK 和 280kG, 这是人类第一次在实验室中实现如此低的温度和如此强的磁场(地磁场是 mG 的量级). 这样的实验技术令人叹为观止,他们也因此观察到了更加丰富的结构: 他们也因此观察到了更加丰富的结构。他们的发现由此被称为分数量子霍尔效应。

冯·克里津获得1985年诺贝尔物理学奖,而崔琦和史特莫则获得了 1998 年诺贝尔奖。到了2005年,英国科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。他们俩在2005年发现了石墨烯中的半整数量子霍尔效应,斩获2010年的诺贝尔物理学奖。

简单来说,量子霍尔效应一般都是在超低温和强磁场等极端条件下出现。在极端条件下,电子的偏转不再像普通霍尔效应中一样,而是变得更加剧烈并且偏转半径变得很小,仿佛就在导体内部围绕着某点转圈圈。也就是说,导体中间的部分电子被“锁住了”,要想导通电流只能走导体的边缘。

量子霍尔效应与霍尔效应最大的不同之处在于横向电压对磁场的响应明显不同. 横向电阻是量子化的:

2018年12月18日,英国《自然》杂志刊登复旦大学物理学系修发贤课题组的最新研究成果《砷化镉中基于外尔轨道的量子霍尔效应》,这也是中国科学家首次在三维空间中发现量子霍尔效应。

后来,中国科技大学与其合作团队在《自然》刊登论文表示,他们通过实验验证了三维量子霍尔效应,并发现了金属-绝缘体的转换。他们发现,人们能够通过控制温度和外加磁场实现金属-绝缘体的转化。这种原理可以用来制造“量子磁控开关”等电子元器件。三维量子霍尔效应材料中的电子迁移率都很快,电子能快速传输和响应,在红外探测、电子自旋器件等方面拥有应用前景。再次,三维量子霍尔效应因具有量子化的导电特性,还能应用于特殊的载流子传输系统。

这个时候,就要讲到量子反常霍尔效应了,因为霍尔效应实现量子化,有着两个极端苛刻的前提条件:一是需要十几万高斯的强磁场,而地球的磁场强度才不过0.5高斯;二是需要接近于绝对零度的温度。

在此背景下,科学家们又提出了一个设想:普通状态下的霍尔现象会出现反常,那么,量子化的霍尔现象是否也能出现反常?如果有,不是就可以解决外加高磁场的先决条件了吗?

也就是说量子反常霍尔效应它不依赖于强磁场而由材料本身的自发磁化产生。在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。

我们可以用一个简单的比喻,来说明量子霍尔效应和量子反常霍尔效应之间的关系,我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗。而量子霍尔效应则可以对电子的运动制定一个规则,让它们在各自的跑道上“一往无前”地前进。

然而,量子霍尔效应的产生需要非常强的磁场,“相当于外加10个计算机大的磁铁,这不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。”而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。

2006年, 美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等有多个世界一流的研究组沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。因此量子反常霍尔现象也被称为物理学研究皇冠上的明珠。

量子反常霍尔效应实现非常困难,需要精准的材料设计、制备与调控。尽管多年来各国科学家提出几种不同的实现途径,但所需的材料和结构非常难以制备,因此在实验上进展缓慢。

2009 年,薛其坤和他的团队也开始了对量子反常霍尔效应的攻坚之路,薛其坤在许多人的眼里,并不算是一个天才。

1963 年,薛其坤出生山东省沂蒙山区的一个小村庄,家里兄弟姐妹比较多。读小学、中学时,农村条件还相对落后,大人们都在为生计而努力。薛其坤也没有做什么物理学家的梦,只是有书读那就读。后来,国家恢复高考的消息传来,薛其坤觉得不能浪费这个机会,就开始用心备战高考。

1980 年,17岁的薛其坤考入山东大学光学系,之所以选择光学系也是因为老师推荐了这个专业,对什么专业都不懂的薛其坤依葫芦画瓢填了这个专业。1984年毕业的薛其坤开始边工作边考研,结果考了三次才考上中科院物理所。1990 年硕士毕业之后,结果又花了 7 年时间才拿到博士文凭。

薛其坤有个外号,叫“7-11院士”。熟悉他的人都知道,早上7点进实验室,一直干到晚上11点离开,这样的作息,薛其坤坚持了20年。薛其坤认为自己既然不是“天才”,那就做个“笨人”吧。做好一个“笨人”,才是不容易的。

从2009 年,薛其坤团队经过近5年的研究,从拓扑绝缘体材料生长初期的成功,再到后期克服实验中的重重难关,薛其坤团队付出了常人难以想象的努力。但实验最终的成功与否,还要看一个标志性实验数据——在零磁场中,能否让磁性拓扑绝缘体材料的霍尔电阻跳变到25813欧姆的量子电阻值。

他们生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。这是首次在实验上发现量子反常霍尔效应。

2010年,课题组完成了对1纳米到6纳米(头发丝粗细的万分之一)厚度薄膜的生长和输运测量,得到了系统的结果,从而使得准二维超薄膜的生长测量成为可能。

2011年,课题组实现了对拓扑绝缘体能带结构的精密调控,使得其体材料成为真正的绝缘体,去除了其对输运性质的影响。

2012年初,课题组在准二维、体绝缘的拓扑绝缘体中实现了自发长程铁磁性,并利用外加栅极电压对其电子结构进行原位精密调控。

2012年10月,课题组终于发现在一定的外加栅极电压范围内,此材料在零磁场中的反常霍尔电阻达到了量子霍尔效应的特征值h/e2—25800欧姆——世界难题得以攻克。

课题组克服薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,最终为这一物理现象的实现画上了完美的句号。

近5年艰苦卓绝的协同攻关,薛其坤团队克服薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,最终为这一物理现象的实现画上了完美句号。

《科学》杂志的一位审稿人说:“这项工作毫无疑问地证实了与普通量子霍尔效应不同来源的单通道边缘态的存在。我认为这是凝聚态物理学一项非常重要的成就。”另一位审稿人说:“这篇文章结束了多年来对无朗道能级的量子霍尔效应的探寻。这是一篇里程碑式的文章。”


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8613458.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存