一个探针可以测几个区域

一个探针可以测几个区域,第1张

28个。电子探针全称电子探针X 射线显微分析仪,英文简称为EPMA,主要用途是透过显微观察固体物质的特性,与扫描电镜一样同属微束分析仪器的一种,已逐渐被实验室作为通用分析仪器之一。其优点在于能够观察样品表面的形貌特征、进行微区成分的相关分析等,实现对材料的定性、定量、线、面等分析。除此之外,电子探针还能够对样品表面呈现的二次电子像、X-ray 像、吸收电子像、背散射电子像等进行观察和分析。电子探针在对物品进行观察和分析时,通常采用磨平或抛光等处理手段使样品表面保持光滑平整,以此得到类纳米级别的微观相分布,便于分析领域的人员对微观区域的准确定位与分析。随着分辨率的提高,电子探针分析方法已在冶金、地质侦探、半导体材料、化工化学、生物医学等领域拓展,并发挥着重要的分析作用。

电子探针(EPMA)又称X射线显微分析仪(见图2-2-7)。它利用集束后的高能电子束轰击宝石样品表面,并在一个微米级的有限深度和侧向扩展的微区体积内激发,产生特征X射线、二次电子、背散射电子、阴极荧光等。现代的电子探针多数配有X射线能谱仪,根据不同X射线的分析方法(波谱仪或能谱仪),可定量或定性地分析物质的组成元素的化学成分、表面形貌及结构特征,为是一种有效、无损的宝石化学成分分析方法。

图2-2-7 R-1800型电子探针

一、基本原理

电子q用以发射具有一定能量的电子束,通过轴对称电场或磁场构成的电子透镜调节电子束的束斑的强度与大小。扫描发生器按时间与空间的顺序,把电子束打到样品室内的宝石样品上,并随时收集所产生的二次电子。二次电子是电子束轰击到宝石时,逐出宝石样品浅表层原子的核外电子。由于一定能量的电子束所逐出的二次电子的激发效率和宝石样品元素的电离能以及电子束与宝石样品的夹角有关,因此根据二次电子的强度可作宝石样品的形貌分析。当电子束在宝石样品上扫描时与显示屏幕的扫描完全同步,即可保证宝石样品上的“物点”与显示屏幕上的“像点”在时间与空间上一一对应,于是在显示屏幕上就得到一个反映宝石样品表面形貌的放大图像。若利用分光晶体来测定所产生的特征X射线波谱或者利用半导体检测特征X射线能谱,即测得不同波长或者不同能量及与它们相对强度的信息,从而可获取微区的成分的定性、定量的结果。电子探针可视为一种试样的无损分析法。电子探针通常由电子q、电子透镜、样品室、信号检测、显示系统及真空系统组成。

二、分析方法

1.波谱仪(波长分散谱仪)

一般说来,入射电子束激发宝石产生的特征X射线是多波长的。波谱仪利用某些分光晶体对X射线的衍射作用来达到使不同波长分散的目的,通过测量对应某元素的适当谱线的X射线强度就可以得到这种元素的定量结果。为了排除谱波仪在检测不同元素谱线时条件不同所产生的影响,一般采用化学成分已知的标样进行标定。

2.能谱仪(能量色散谱仪)

能谱仪与波谱仪不同,它是利用特征X射线的能量不同而进行展谱分析的方法,当高能电子束轰击宝石样品时,宝石样品中各种元素都被激发而放射出不同能量的X射线,能谱仪将这些X射线收集起来,按能量大小将其分类并快速显示出谱线再加以检测,从而进行定性、定量分析。

三、宝石学应用

1.点分析

即对宝石表面或露出宝石表面的晶体包体选定微区作定点的全谱扫描,进行定量、定性或半定量分析。首先用同轴光学显微镜进行观察,将待分析的宝石样品微区移到视野中心,然后使聚焦电子束固定照射到该点上,这时驱动谱仪的晶体和检测器连续地改变L值,记录X射线信号强度I随波长的变化曲线。通过检查谱线强度峰值位置的波长,即可获得所测微区内含有元素的定性结果,测量对应某元素的适当谱线的X射线强度就可以得到这种元素的定量结果。图2-2-8为充填处理红宝石的电子探针能谱点分析的结果,显示充填物为铅玻璃。

图2-2-8 铅玻璃充填处理红宝石的EPMA能谱点分析

2.面扫描分析

聚焦电子束在宝石表面进行光栅式面扫描,将X射线谱仪调到只检测某一元素的特征X射线位置,用X射线检测器的输出脉冲信号控制同步扫描的显像扫描线亮度,在荧光屏上得到由许多亮点组成的图像。亮点就是该元素的所在处。根据图像上亮点的疏密程度就可确定某元素在试样表面上分布情况,将X射线谱仪调整到测定另一元素特征X射线位置时就可得到那一成分的面分布图像。电子探针面扫描分析有助于探讨宝石中化学元素在空间上的配比与分布规律(见图2-2-9)。

图2-2-9 铅玻璃充填处理红宝石的EPMA能谱面扫描分析

3.线扫描分析

在光学显微镜的监视下,把样品要检测的方向调至X或Y方向,使聚焦电子束在宝石的生长环带或色带的扫描区域内沿一条直线进行慢扫描,同时用计数率计检测某一特征X射线的瞬时强度。若显像管射线束的横向扫描与试样上的线扫描同步,用计数率计的输出控制显像管射线束的纵向位置,这样就可以得到特征X射线强度沿试样扫描线的分布特征。EPMA线扫描分析有助于探讨宝石中化学元素在空间上的变化规律。图2-2-10为铍扩散处理橙红色蓝宝石的Fe、Ti、Cr的EPMA能谱线扫描分析结果。

4.表面微形貌分析

二次电子是电子束轰击到试样时逐出样品浅表层原子的核外电子,由于一定能量的电子束所逐出的二次电子的激发效率和样品元素的电离能以及电子束与样品的夹角有关,因此根据二次电子的强度可作形貌分析。图2-2-11为翡翠中环带交代结构的EPMA二次电子像。

图2-2-10 铍扩散处理橙红色蓝宝石的EPMA能谱线扫描分析

图2-2-11 翡翠中环带交代结构的EPMA二次电子像

现状的显微镜展望 摘要:本文简要介绍了电子显微镜的现状与展望。 :透射电子显微镜观察的高分辨率电子显微镜和原子像像差校正电子显微镜,原子尺度电子全息摄影,正面的表面上成像的高分辨率电子显微镜,超高压电子显微镜,中等电压电子显微镜,120KV ,100kV的分析电子显微镜,场发射q扫描透射电子显微镜和能量选择电子显微镜,透射电子显微镜将再次面临一个新的重大突破扫描电子显微镜扫描电子显微镜和X射线能量色散X射线分析光谱仪和电子探针分析仪,场发射扫描电镜,电动后视镜,大样品室,扫描电镜,环境扫描电子显微镜,扫描电声显微镜,扫描电镜长度测量/缺陷检测,晶体取向成像扫描电子低电压扫描显微外科和计算机控制的扫描电子显微镜。的扫描型电子显微镜的分辨能力,预计将达到0.2-为0.3nm和观察到的原子图像。 关键词:透射电子显微镜,扫描电子显微镜仪器的制造和开发 电子显微镜(简称电镜,EM)经过50多年的发展已成为不可缺少的重要现代科学和技术工具。电子显微镜技术也得到了长足的进步。创电子显微镜鲁斯卡教授(E.Ruska),从而赢得了1986年诺贝尔物理学奖。的电子和材料的??相互作用将产生一个发射电子的d性散射的电子,电子,二次电子,背散射电子,吸收电子,X射线,俄歇电子,阴极发光,和电力的能量损失,并等等。电子显微镜是利用这些信息来品尝形貌,成分分析和结构测定。有许多类型的电子显微镜,透射型电子显微镜(简称透射电镜TEM)和扫描电子显微镜(以下简称为扫描型电子显微镜,SEM)两大类。的扫描透射电子显微镜(以下简称为扫描透射电子显微镜STEM),既两者的性能。为了进一步表征的仪器特征,区分如:超高压(1MV)和中等电压(200 - 500千伏)的透射电子显微镜,低电压(?1kV的),扫描电子显微镜的加速电压,区分类型的电子q,如场发射q电镜目的来区分??,如高分辨率电镜,分析电源镜子,能量选择电子显微镜,电子显微镜生物,环保电动反射镜,在原位电镜,长度测量CD的扫描电反射镜信息激发这种电子探针透视微分析仪(以下简称为电子探针EPMA)的命名。 超过半世纪的电子显微镜目标,主要的目的是观察微小物体的结构,小实体,甚至单个原子,和样品的详细信息,如标准征收非多晶和微晶,成分分布,颗粒形状和大小,晶相,晶界和晶体缺陷,特性和其他特性的取向,以便进行全面的分析,该材料的微观结构,上标符号研究[3]。近来,电子显微镜(电镜),包括扫描隧道显微镜,也有了长足的发展。本文仅讨论使用广泛的透射电子显微镜和扫描电子显微镜,上面列出的几个方面作一简要介绍。电子显微镜和扫描电子显微镜主要表现在文献中可以找到。 透射电子显微镜 1,高分辨率的电子显微镜和原子像的观察宏观性能的材料往往是自己的成分,结构中的原子的位置,以及水晶缺陷是密切相关的。观察样品中的单个原子像科学界长期追求的目标。一个原子的直径约2-3mm的百万分之一十。因此,为了区分的各原子的位置,需要解决功率约0.1nm,并把它的一万倍左右。成立于20世纪70年代初,高分辨电子显微镜(HREM)直接观察到在原子尺度上的材料微观结构分析学科。引进计算机图像处理技术的超高分辨率和定量的方向进一步发展,同时也开辟了新的应用领域。例如,英国医学研究委员会分子生物学实验室A.Klug博士开发的对象的高分辨率的图像处理技术,重建的三维结构的分子生物学开辟了一个新的领域。从而赢得了1982年诺贝尔化学奖,以表彰他的杰出贡献晶体电子显微镜和核酸 - 蛋白复合物的晶体结构的发展。 HREM单个原子成像严重的困难是信号/噪声比太小。电子穿过样品成像后有助于电子的d性散射(没有能量损失,只有改变运动方向)的百分比太低,但也不是无关紧要的电子的d性散射(既失去能量并更改没有贡献的运动方向)的摄像背衬形成的明亮的(明场),并因此,非常小的,如在周期性结构的示例的单个原子的对比度。在文件的未散射直透的电子的暗场图像可以被观察到,由于增加对比度,其特征在于,所述重原子,如铀和钍BTCA铀(Z = 92)和钍(Z = 90)原子。晶体样品的原子阵列会加强成像信息。超高压电子显微镜和适度的加速电压的高亮度,高程度的连贯性的场致发射电子q透射电子显微镜(HRTEM)(施科泽散焦)的散焦条件下拍摄的图像,特别是薄晶体可以得到直接与晶体原子结构相应的结构类似。然后,图像处理技术,例如,的电子晶体加工方法,已被一个200KV的JEM-2010F型场发射电子显微镜(点解析力0.194nm)上的结构的信息的分辨率,得到超高分辨率的能够拍摄的照片约为0.2nm,成功地测定晶体结构的分辨率约为0.1nm。的像差校正电子显微镜电子显微镜的分辨能力的光学透镜由于电子透镜的球面像差的局限性,摄影图像的人力,以减少或消除球面像差。然而,早在1936年施科泽指出的是,对于常用的非空间电荷和不随时间而改变,旋转对称的电子透镜的球面像差常数是正的。在20世纪40年代由于电子物镜的衍射和球的平衡能力差,电子显微镜的分辨能力约0.5海里的理论。的主要像差校正电子透镜是长期追求的目标。经过50多年的努力,1990年玫瑰的六极校正校正镜头畸变像差的电子光学系统的方法。 200KV CM200ST场发射q透射电子显微镜最近增加了这六极校正,发展成为了世界上第一个像差校正电子显微镜。在电子显微镜的高度只有24厘米,并且不影响其他属性。解像力为0.24nm到0.14nm。砷化镓捕获在电子显微镜下的球面像差系数在此像差校正上减小到0.05mm(50μm)的取向的哑铃形结构类似点距0.14nm。 3,原子尺度的电子全息的Gabor难以纠正的情况下,电子透镜的球面像差,在1948年时的电子全息术的基本原理和方法。证明,如果该全息图是用电子束产生的,记录的电子波的振幅和相位,然后与光波重现,只要与电子光学的像差的精确匹配的光的光学像差,可以得到无像差,更高分辨率的图像。良好的相干电子源,电子全息术的发展是相当缓慢。后来,光全息思想应用到激光领域,并取得了巨大的成功。的Gabor也被授予诺贝尔物理学奖。双棱镜的Mollenstedt的静电发明以及点状灯丝,特别是场发射电子q,电子全息的理论和实验研究已经有了很大的进步在电磁场测量和高分辨电子显微镜图像重建取得了丰硕的成果[9]。 lichte电子全息术在CM30 FEG / ST型电子显微镜(球面像差系数Cs =?? 1.2mm)的每千片×每千片慢扫描CCD摄像机获得0.13nm的分辨能力。目前,使用刚刚安装的CM30 FEG / UT电子显微镜的的(球差系数Cs =??0.65毫米)和2K×2K CCD摄像头,已经达到了0.1nm的信息极限分辨能力。 4,表面成像高分辨电子显微学正如何区分表面和体晶格周期,以获得样品表面的电子显微镜学术界是一个长期的关注。正表面的高分辨电子显微镜的成像和图像处理得到了长足的进步,成功地揭示了硅[111](7×7)表面重构的细节,不仅看到了扫描隧道显微镜STM的表面可以看到在的第一层金属原子(吸附原子),你可以看到所有的原子在顶部的三个层次,包括STM仍然是很难看到的二聚体在第三层(二聚体),阳性显像方法,目前被认为是最强大的直接观察到的表面结构的STM相比,在原子水平上,也有其独特的。李日期升级观察铜[110]的表面上的Cu-O的原子链(2×1)的吸附重建的一个例子,使用的表面的高分辨率电子显微镜阳性成像方法所产生的多晶膜,表明,对于所有的强周期系统,有相反的周期性变化,一般厚的膜可以是正数,如高分辨率表面观察的厚度。 5,超高压电子显微镜近年来,超高压透射电子显微镜的分辨能力得到了进一步的提高。 JEOL公司取得了1250kV一个JEM-ARM 千分之一千二百五十○型超高压原子的高分辨电子显微镜,点分辨能力达到0.1nm厚的样品可以直接观察到在原子水平上的三维结构。日立在1995年一个新的3MV超高压透射电子显微镜的分辨能力0.14nm。超高压电子显微镜高的分辨能力,穿透能力强的样品(1MV 100kV的3倍左右的),但价格是昂贵的,高的专用实验室,它是难以推广。 6,中高压电子显微镜中等电压200KV \ 300KV电子显微镜的穿透能力分别为1.6和2.2倍,100kV的,成本低,效益/输入是高的,并因此得到了很多的发展。场发射透射电子显微镜已日趋成熟。 TEM往往配有锂漂流硅的Si(Li)X射线能量色散光谱(EDS),有的还配备了电子式电能可以选择成像光谱仪分析样品的化学组成和结构。原本的两种类型的高分辨率和分析电子显微镜结合趋势:完全通过计算机控制的计算机软件的 *** 作,甚至更小的球面像差系数的物镜和场致发射的电子q,可以得到高分辨率的图像,但也为纳米尺度的化学组成和结构的微分析,发展成一个多功能高分辨率分析电子显微镜。 JEOL的200KV JEM-2010F 300KV的JEM-3000F,日立200KV HF-2000和荷兰飞利浦公司200KV CM200 FEG和300KV CM300 FEG型的。 ,的传统200kVTEM国际点分辨能力为0.2nm的约-150万次,约50倍的放大倍率。 7120千伏\,100KV电子显微镜分析领域的生物学,医学,农业,医药和食品工业中常常需要通过电子显微镜和光学显微镜获得的信息。因此,在高分辨率的图像也可以得到大视场高 - 低对比度的显微图像, *** 作方便,结构紧凑,计算机控制分析电子显微镜配备了EDS也应运而生。例如,飞利浦CM120 Biotwin电反射镜配备的冷冻试样台和EDS分析的低对比度,并且可以观察到电子束敏感的生物试样。日本JEM-1200电子显微镜低倍和良好的对比度,适用于材料科学和生命科学的研究。这种多用途的120KV透射电子显微镜点的分辨能力大约是0.35nm。 8,场发射q扫描透射电子显微镜,场发射扫描透射电子显微镜STEM大学芝加哥教授AVCrewe在20世纪70年代初开发的。样品后的两个探测器,分别逐点接收所有未被散射透射电子和散射电子。电子信息与原子序数变化的d性和非d性散射。的环形检测器接收的散射角度较大时,电子的d性散射。重原子的d性散射电子,如果入射电子束的直径小于0.5nm的,和样品是足够薄的,可以得到一个单一的原子,如。实际看到STEM单一的γ-氧化铝载体膜的Pt和Rh原子。透射电子中的环形检测器的中心,通过该孔的特征能量是由中央检测器接收,然后可以进行测量的损失分量分析的能量分析仪。为此,克鲁发展的平均电子q的亮度高于约五个数量级的场致发射的电子q的FEG:钨单晶尖端的曲率半径下的电场强度的作用,只有100MV/cm约100nm,在室温下将产生的场致发射电子,电子束被聚焦到0.2-1.0纳米,而仍然足够大亮度。英国VG公司在20世纪80年代,干起开始生产。最近的电磁四极 - 八极球的像差修正增加在VGHB5 FEGSTEM,减少球面像差系数从3.50.1毫米。进一步排除各种不稳定因素有望改善的100KV干0.1nm的暗场图像的分辨能力。使用的加速??电压300KV的电子显微镜图像获得的Cu的VG-HB603U型:基本间距为0.208nm和0.127nm的晶格图像。期待的物镜的球面像差的系数降低至0.7mm的400kV仪器,可以实现更高的分辨能力。此的UHV-STEM工具是非常复杂的,难于推广。 9,高能电子显微镜,能源选择电镜EF-TEM是一个新的发展方向。总透射电子显微镜,d性散射电子显微镜的图片或衍射图案形成非d性散射电子以被忽略的倾向,但最近已被用作电子能量损失谱分析。德国蔡司奥普顿在20世纪80年代末生产的EM902A生物电子显微镜,配备了电子能谱仪成像系统,选择一个特定的特征能量损失电子成像。它的主要优点是:0.5微米厚的样品,可以观察,可以看到染色的生物样本的显微镜图像的高对比度,而且还元素分布图像。 LEO公司徕卡蔡司EM912欧米茄电子显微镜装有Ω-电子能量过滤器可以滤出,形成的非d性散射的电子和其他不需要的电子的,具有一定的能量的电子信息的后端结合,过滤的能量会聚束衍射和成像,清楚地表明,原来覆盖的弱显微镜和电子衍射技巧。该公司开发的,在此基础上,200KV自动节能选择TEM。 JEOL公司也正在开发与Ω-电子能量的过滤器JEM2010FEF类型电子显微镜,点分辨能力0.19nm,能量分辨率100kV的和200KV,分别2.1μm/eV和1.1μm/eV。日立还报道光谱成像系统,与EF-1000γ形电子能量在TEM观察到清晰的半导体动态随机存取存储器(DRAM)的厚度为0.5μm的片的截面的显微镜照片。的的电子能量GATAN选择成像系统安装在成像电子能量损失谱EELS选择的投影透镜的后方。读出的行数据,处理,输出,并在几秒钟内的图像的质量,可以实现及时了解,从而自动调整相关的参数,完成自动接合轴,自动校正像散,和自动聚焦。例如,在400千伏的JEM-4000EX型电子显微镜使用换肤能量选择原子的图像,并在同一时间完成EELS化学分析。 透射电子显微镜,经过半个世纪的发展接近或达到理论功率为0.1-0.2nm的分辨率取决于镜头的球面像差和衍射差。人们正在探索进一步消除透镜的各种像差的[20],在后部的电子q的添加的电子单色器,研究新的像差修正方法,以进一步改善电磁透镜和整个仪器的稳定性采用和进一步发展高亮度电子源中,场致发射电子q来选择成像光谱仪,X-射线光谱和电子能量,缓慢扫描电荷耦合器件CCD,严寒和环境样品室纳米会聚束微衍射,原位实时分析,圆锥扫描晶体成像(圆锥扫描结晶),全数字化控制,图像处理,和现代信息传输技术实现远程 *** 作观察,以及克服各种样品本身所带来的限制,在透射电子显微镜中面临的一个重大突破。 扫描型电子显微镜 1,扫描电子显微镜和X-射线能量色散目前,最广泛使用的的常规钨阴极扫描电子显微镜的分辨能力达到3.5nm的分析约,加速电压范围为0.2-30KV。分析扫描电子显微镜,扫描型电子显微镜配备的X-射线能量色散谱EDS发展成不仅速度比的X-射线光谱仪WDS的分析速度,灵敏度高,,也定性和标样的定量分析。 EDS的发展十分迅速,并已成为一个重要组成部分的仪器,即使它的混合。然而,EDS有不足之处,如低的能量分辨率,通常为129-155eV,以及在低的温度(液氮冷却)要使用的Si(Li)晶体。透视谱仪的分辨率是高得多,通常为5-10eV,并能在室温下 *** 作。 1972年EDAX发展,一个ECON系列无窗口的探测器,可满足特殊需求的超轻元素的分析,但容易受到污染的Si(Li)晶体。 1987 Kevex公司开发能够承受大气ATW超薄窗口之间的压力差,以避免上述的缺点,并且在B,C,N,O的超轻元素,等等可以被检测到,并创建一个大的条件的应用程序的数量。 Kevex公司量词NORAN公司极端Link公司Ultracool EDAX蓝宝石的Si(Li)探测器是这一切的单一窗口超轻的元素编码器分辨率129eV,133eV探头延伸到5B-92U。为了克服传统的Si(Li)探测器需要用液氮冷却的不便,在1989年,Kevex公司推出的无需液氮的Superdry探测器,NORAN公司还生产的的热电制冷自由探测器(小型冷却与循环水),和所述压缩机的制冷Cryocooled探测器。两个检测器必须是每天24小时通电,适合于非液体氮的供给单元。现在大多使用或改进的液态氮冷却的Si(Li)探测器,用液氮冷却,加入在实际工作中,通常并不一定要维持一个液态氮的供应。最近开发的高纯度锗Ge探测器,不仅要提高分辨率,而且还扩大检测能量范围(从25keV扩展到100keV),特别适用于透射电子显微镜:链接创业板分辨率优于115eV(MnKα)和65eV (FKα),NORAN的资源管理器 Ge检测器,检测范围可达100keV。由上海原子核研究所,中国在1995年科学研究院成为了Si(Li)探测器的能量分辨率为152eV。中国科学研究院,北京科学仪器发展中心生产的X射线分析系统搜索-1000硬件抽奖的的NORAN公司的功能电路上,一起与公司的探测器,在使用的Windows *** 作系统,图形谱的发展分析系统的计划。 透视谱仪和电子探针分析仪大多数现代的SEM EDS检测器被配置为成分分析的。当所要求的低的水平,可以增加准确的定量以及超轻元素分析1-4 X-射线分光计的WDS。全聚焦Microspec公司WDX-400,WDX-600,分别配备有四个和六个不同的衍射晶体,可以检测到上述各种元素的5B(4BE)。光谱仪可倾斜的方式安装在扫描型电子显微镜的试样腔室中,为了的水平放置,如垂直光谱仪来分析一个示例,而不是需要使用光学显微镜来精确调整试样的工作距离从客观镜头。 超轻量元素的样品,以满足大量的多元素,低级别的高速定性,定量常规分析的需求,法国CAMECA公司长期生产电子探针仪,SX50 SXmacro类型,具有四个WDS和一个EDS,物镜内置同轴光学显微镜可以观察和分析的面积在任何时间。的最新制造株式会社岛津制作计算机控制EPMA-1600电子探针配置2-5道WDS和EDS的之一,最大的样本大小为100mm×100×50毫米(厚度)的二次电子图像的分辨率为6nm。 JEOL公司还生产电脑控制的JXA-8800电子探针JXA-8900系列WD / ED集成显微分析系统 - 电子探头安装X射线光谱仪和X射线能量色散光谱,元素分析范围5B-92U,的二次电子图像的分辨率为6nm以上。 NORAN公司下属峰公司最近开发出一个新的顶点完全参数化的X射线光谱仪,完全不同于传统的机械联动,6个独立的伺服电机控制,通过计算机调整分析晶体的位置和倾角,X,Y的坐标的X-射线检测器,和狭缝宽度。光谱的晶体可配备4个标准分析5B(4BE)的元素。罗兰圆半径的元素的分析和变化,可以是170,180,190,和200毫米,分别以获得最大的计数率,并提高了分析精度和灵活性。 NORAN公司还推出了平行的X-射线光谱仪称为MAXray,最新的X - 整个的准平行光束透视镜头之间的X-射线的发射点上的样品和分析被放置的光学研究水晶提高接收机的X射线的立体角,比一般强度的WDS约50倍的增长。可以分析100eV-1.8keV K,L,M线,特别有利于低电压,低束分析,,B,C,N,O和F的能量范围,分辨率可高达5-15eV,同时WDS的EDS高分辨率和高除尘效率。两个新的X射线光谱仪得到广泛的应用。 3,场发射扫描电子显微镜和低电压扫描电子显微镜场发射扫描电子显微镜获得了很大的发展[24]。 AMRAY公司生产的日立公司推出了冷场发射q扫描电子显微镜,热场发射扫描电子显微镜,不仅能改善传统的加速电压的分辨能力,也显着地改善了低电压性能。低压扫描电子显微镜LVSEM成像可以提高对比度,减少甚至消除样品的充电和放电现象,减少辐射的伤害,所以人民的好头。 JEOL公司的JSM-600°F型场致发射的超高分辨率的扫描电子显微镜的加速电压为30kV的分辨能力达到为0.6nm,是接近水平的TEM试样,必须浸渍在强磁场的客观,以减少透镜的球面像差的影响,所以大小是有限的,最大为23mm×6毫米×3毫米(厚)。场致发射的JSM-6340F型试样半沉浸在磁场中的物镜的可观察到大的试样,当加速电压为15kV的分辨能力,低压力1kV的处于2.5nm 1.2nm的。两种SEM由于样品在磁场中的,所以我们不能观察磁性材料。 CF校正场小型物镜观察:大样本JSM-6600F场发射型的分辨能力处于2.5nm(1KV 8nm的)。日立还提供这些类型的产品,例如S-5000,S-4500和S-4700型。 米拉型扫描电子显微镜扫描电镜德国Visitec捷高公司的大样品室的大样品室。的被分析物的最大尺寸可以是直径为700mm,高600mm,长度1400毫米,300公斤的最大重量,真空室长度1400,1100和1200mm的宽度。 4nm的解像力,加速电压为0.3千伏-20KV。一种新的计算机控制的,非破坏性的检查和分析测试装置可用于生产的工业产品,质量管理,计算机处理和手工业检查研究。 5,环境扫描电镜ESEM环境扫描电子显微镜 80年代出现了试样可以根据需要在不同的气氛与压力1-2600Pa高压低真空环境,开拓新的领域的应用程序。传统的高真空扫描电镜样品室的10-3PA是不同的,所以它也被称为低真空扫描电子显微镜,LV-SEM。在这样的低真空环境中,绝缘样品不会即使在高加速电压的充电和放电的现象由于不能被观察到,湿样品,可以留在其原来的自然状态水溶液而不变形。因此,环境扫描电子显微镜可以直接观察到,塑料,陶瓷,纸张,岩石,污垢,和骨质疏松症将放电气体原料和生物试样水溶液,没有先喷涂导电层或冷冻干燥过程。 1990年美国电子扫描该公司首次推出的产品ESEM。低真空环境,以确保的高压样品室,LV-SEM真空系统的,应给予特殊考虑。 AMRAY,日立,JEOL和LEO有这样的产品。样品室为6-270Pa,JSM-5600LV-SEM的分辨率技能达到5.0nm,自动切换到常规扫描电子显微镜的分辨能力可达3.5nm的高真空后。中国科学研究院,北京科学仪器发展中心与中国科学院化工冶金研究所合作,发展KYKY-1500高温环境扫描电子显微镜,最高的采样温度高达1200°C和800°的最大压力为2600帕C的分辨率为60nm,观察在室温下湿玉米淀粉粒子的横截面,该盐的结晶粒子,和50Pa,900°C时铁矿石在针状的Fe \-2O \ -3标本。 6,扫描电声显微镜 80年代初问世的扫描电声显微镜SEAM,使用一种新的成像方式:它的强度频闪调制的电子束在样品表面扫描,用压电传感器接收到的热量


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8623166.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存