远川 科技 评论近日从产业链人士处独家获悉,北纬三十八度集成电路制造有限公司(以下简称“北纬公司”)为国内芯片设计商深圳新声半导体(以下简称“新声”)代工的声表面波滤波器产品(以下简称SAW滤波器),已投入量产且达到发货水准。双方合作的SAW滤波器主打难度较高的射频模组。
这标志着,北纬公司成为国内极少数具备滤波器制造能力的射频芯片代工厂。结合我们此前发布的BAW滤波器量产消息,可以说,中国芯片产业界的射频短板已悉数补齐,向全自主射频模组又迈出了一大步。
梳理最近国内射频芯片界的动作,不难发现,纯晶圆代工+独立芯片设计商,在当下的时点,成为一个越来越具代表性的产业路线。回顾全球范围内的射频芯片产业发展史就会发现,这一路线响应了当下中国 科技 产业的需要。无论是突破关键芯片卡脖子,还是在商业上可持续发展,都是一个大胆且值得称道的尝试。
本文从全球射频芯片发展史出发,试图梳理前后三代的发展路径:
1. 第一代:买、买、买
2. 第二代:代工,还是IDM?
3. 第三代:组合式创新
射频领域的国际巨头,都是通过并购成长而来。
首先是博通。博通前身安华高(Avago)脱胎于惠普的半导体部门,2008年收购英飞凌BAW滤波器业务,为其在高端滤波器市场的垄断地位打下坚实的基础。2015年,安华高“小鱼吃大鱼”,以370亿美元代价收购体量比自己更大的旧博通,这场“入赘”式的收购完成后,安华高索性把公司更名为“博通”。
然后是思佳讯(Skyworks)。2006年,思佳讯分拆基带业务专注射频,之后接连并购两家PA厂商,成为全球第一大PA供应商。2014年,思佳讯与松下合资成立FilterCo涉足BAW滤波器业务,其后收购松下剩余股权,至此填上了最后一块业务短板。
至于科沃(Qorvo),其本身就是龙头联姻的结果。2008年后,PA和天线开关大厂RFMD业务接连受挫,先是2G市场增长乏力,然后是PA市场被思佳讯超越。到了2014年,RFMD与擅长SAW和BAW滤波器的TriQuint合并。如此,Qorvo诞生之初,便打通了全产业链。
最后是村田(Murata)。村田本来主营被动元器件,2012年4G爆发之际重金加注SAW滤波器,并在这一市场中高端产品占据统治地位。即便到了BAW滤波器占优的高频领域,村田也率先研发出TC-SAW(温度补偿型)滤波器与之对抗。为了补足PA短板,村田之后并购了瑞萨PA部门和美国Peregrine半导体。
总结国际射频巨头的并购之路,可以发现三条规律:
其一,并购发起者多有一个特别长的长板,在优势领域并购有利于保证产品竞争力,迅速扩大市场占有率。思佳讯收购两家PA公司成为全球第一个PA供应商,是一个典型的案例。
其二,射频前端模组化要求不能有短板。思佳讯收购BAW滤波器公司,村田收购PA公司,是同样的道理。如果射频模组中有一类关键器件需要外购,成本端就是不可控的,不利于做高毛利率。
其三,移动通信制式升级换代是射频行业洗牌的关键节点。思佳讯在3G前夜切入PA,村田在4G发展初期重金加注SAW滤波器,都为后来分别占据细分射频市场头把交椅奠定了基础。
在跨国巨头纷纷通过并购手段,自建大而全的IDM的时候,中国射频公司早早开始了 探索 。三家公司最具代表性,一家是中国台湾地区的稳懋,纯代工模式;另外两家是中国大陆地区的好达和三安,分别为IDM和代工。
先看稳懋。
稳懋1999年成立,一开始跨过4英寸砷化镓产线直接建6英寸,但彼时工艺极不成熟,破片率高达10% 20%,稳定量产难度极大。在外部股东输血支持下,稳懋坚持技术攻关,终于在2006年攻克PHEMT、HBT等关键技术,产线生产效率提高同时,破片率也大大降低到0.5%以下。2007年,稳懋扭亏为盈。目前,稳懋在砷化镓晶圆代工领域占据了接近八成的市占率。
因在砷化镓代工领域的绝对优势,稳懋赢得了两类客户的支持。一类是大陆的PA公司,另一类则是博通和苹果等业务规模庞大、有射频芯片委外制造需求的美国公司。这些客户支撑了稳懋高达上千亿新台币的建厂计划。
既然是代工,有一条还格外重要,那就是严守中立,诚信可靠。2017年,博通旗下的安华高入股稳懋,却同意不进入董事会,就是为了保证其独立可靠。没有这一点,苹果恐怕也很难选择稳懋为自研射频元件的代工商。
从稳懋的案例可见,射频代工也是一个可持续的大生意。要做好,关键在于两点,一个是要在研发上死磕,制造技术要有一个很长的长板,能够提供先进的、全方位的服务;另一个就是在经营上不抢客户的生意,让客户放心。长此以往,便能形成正循环。
相比于稳懋,大陆地区的两个玩家则分别有着明显的短板。
好达成立于1999年,是大陆 历史 最为悠久的射频IDM。2005年,好达研发出手机滤波器。但直到2015年,村田SAW滤波器缺货,好达才迎来一波发展机遇。
相比于好达,三安是射频芯片业界的新生,2014年才切入射频业务,但发展迅速。2021年,三安的SAW滤波器客户已达数十家,产量也从原先的季产1000万跃升至最近的月产1000万颗,由此成为好达在中低端市场的强大对手。
在一些业内人士看来,三安的问题和好达有些类似——在中高端射频产品领域表现乏力,比如没有BAW滤波器。这会衍生一个较大的问题,即模组化的时候面临掣肘,向别人外购成本较高。
总结好达和三安的经验,有两条规律值得注意:
其一,射频工厂一定要有一个特别长的长板,如果没有做到一条产品线的中高端,往下走会比较吃力。在自身禀赋不足的条件下投资很多设计公司,可能限制未来的发展。
其二,模组化是终局,无论是自身的制造能力,还是投资布局,一定要能拼起来射频模组。面向射频模组的器件技术壁垒高、利润率高、竞争不那么激烈,谁在射频模组领域领先,谁就站在了有利的战略位置上。
在吸取了第一代和第二代射频芯片公司的发展经验后,2018年,北纬三十八度集成电路制造有限公司(以下简称“北纬公司”)落户忻州半导体产业园,定位为SAW滤波器和PA晶圆代工厂。
2021年6月份,北纬公司4英寸SAW滤波器产线投产,迅速吸引了国内领先的滤波器设计公司——新声与之深度合作。双方合作的产品为面向射频模组的SAW滤波器。
北纬公司的合作方和产品都经过深思熟虑。
就合作方,新声是国内少数能够同时正向设计SAW和BAW滤波器的设计公司,创始人科班毕业,拥有在博通的丰富工作经验。优秀的设计公司能够很好牵引制造端,帮助工厂打磨工艺。而且,新声设计的BAW滤波器已经出货,与其绑定有利于将来在中高端射频模组的布局。
就产品选择,射频模组化的趋势已经十分明显,北纬公司选择了一开始就做能够放进模组中的滤波器。从产品定义开始,模组化对器件提出一系列更高的要求,在国内的射频芯片业是一个很好的占位。北纬公司聚集了一批来自日本、新加坡的资深专家,团队老中青结合,有能力接住。
经过短时间的磨合,新声在北纬公司代工的SAW滤波器迅速完成产品定型。双方的合作进展如此迅速,源于北纬公司的两点优势:
其一,北纬公司团队自身掌握大量的know-how。虽然是一个新公司,但是以尾藤为首的日本专家曾在NEC等大厂工作,有二十多年的芯片从业经验。SAW滤波器一个很大的难点在于一致性要求高,不能说这一次做出来的产品符合要求,下一次再做参数都变了。尾藤的解决办法是“反复看数据,让数据说话”,可见芯片老师傅的功底。
其二,北纬公司坚守代工服务的定位。SAW滤波器的另外一个难点在于射频信号很容易失真,给仿真领域建模带来较大困难。这就要求工厂工艺工程师需要与芯片设计工程师紧密配合,快速解决设计公司的问题。北纬公司最短48小时、平均一周、最长两周更新一版工艺,而国内某大厂一版工艺的更新时间一般是两个月。
绑定优秀的设计公司、选择面向模组的高产品定位、扎扎实实做好代工服务,北纬公司完成了三步走,下线的SAW滤波器产品在带宽、差损等性能指标上优于同业。
工艺难度更高的TC-SAW滤波器,则是已完成工艺研发,其样片品质因数(即Q值,衡量滤波器信号频率识别准确性的一个核心指标)更是数倍于国内同业竞争对手。
SAW和TC-SAW组合销售,有望成为北纬公司的独特竞争优势,也将使北纬公司在高难度射频芯片领域有一个特别长的长板,为之后扩展商业布局打下坚实的基础。
一个难以想象的事实是,本文所叙述的第三代射频芯片产业的代表——北纬公司,生长于山西省忻州市。
忻州是山西的一个特例——煤炭资源相对贫乏,主打农业。几年前,地方政府决心转型,为半导体产业园“量身定制”了一套特殊政策:为外籍人才提供人才公寓,解决职工子女就学问题,补贴高耗能的半导体原材料厂,电费低至不到两毛一度。
北纬公司生长于一个大环境悄然改善的山西,也的确为这片土地做出了自己的贡献:
首先是一个初具雏形的上下游芯片产业链。本地丰富的铝矾土资源,经过园区企业的处理,成为射频芯片所需的砷化镓晶圆。忻州半导体产业园不只是一个芯片工厂,而是一个芯片生态。
然后是一个极为整洁的冷暖水工程,除了服务于芯片制造,冬天还能给周围的居民区供暖,节省了数以亿计的能源成本。
最后是转型的勇气和方法。山西经济素来倚重煤炭,向 科技 产业转型,不可能凭空诞生一个天才的想法。正是北纬公司数十名驻扎在忻州的异国他乡的科学家和工程师,带动了更多富有才智的山西人回乡建设,最终将 科技 产业的梦想和方法灌输进几百万人心。
全文完,感谢您的耐心阅读。
我个人认为华为还不能恢复5G,因为射频芯片是要集成到Soc芯片里面的,国内的厂商还没有可以加工7nm芯片的技术,更何况是现在主流的3nm,只有三星和台积电有能力生产,而且台积电才是真正的可以稳定生产3nm芯片。所以华为短期还是没办法恢复5G的。
看到国产厂商实现射频芯片的出货,我是很高兴的。但芯片的制造并没有那么简单,射频芯片只是一个Soc芯片里面的一部分,用来处理手机信号的。如果需要彻底恢复5G,那必须要有3nm的加工技术,不然5G的确是恢复了,但是不能上机,因为性能恢很拉胯,而且还极有可能出现各种问题,这样对华为自身的口碑也不好,所以说,华为现在想恢复5G是可以了,但是想正常继续自己的消费者业务,还是很难的,除非美国放弃针对于华为的制裁。
虽然我们已经在极力追赶了,但不得不说,我们在半导体领域,距离发达国家还是要很远的距离。华为的问题不止是一个射频芯片的问题,这只是一个比较大的问题,还有芯片加工和芯片设计软件等问题,现如今的芯片已经是高度集成的了,里面有数以亿计的晶体管,必须要依靠专门的软件才能设计出来,现在华为需要彻底恢复5G,基本上不可能的,因为射频芯片解决了,还有芯片设计和加工,特别是芯片设计方面,和射频芯片是一个级别的难度。
总的来说,虽然华为公开了射频芯片专利,国产厂商也实现了射频芯片的出货,但我个人认为华为还是无法恢复5G的,因为射频芯片只是5G的一部分,还要有其它方面的配合才可以。
近日,前瞻产业研究院发布《 横跨数个百亿赛道 国产射频微波领域仪器仪表如何破局 》专题报道:
频谱分析仪、矢量网络分析仪、射频信号发生器并称为射频三大件,受益于近年来5G商用化进程、新基建工程、智能网联 汽车 的快速推进,中国射频三大件市场规模快速增长,且规模增速快于全球市场。同时,射频三大件持续发挥着“小口径、大带动”的作用,通过自身的技术进步,带动下游5G、半导体、物联网等万亿级市场的进一步发展。
同时,随着中国市场的快速发展,国产替代已经成为大势所趋,如成都玖锦等国内厂商纷纷通过突破技术壁垒、倾力品牌打造、重视市场培育与建设等手段走出一条可持续发展的国产化替代之路。
1、中国射频三大件市场发展现状
——射频三大件(频谱分析仪、矢量网络分析仪、射频信号发生器)概述
频谱分析仪
根据国家标准《GB/T 11461-2013 频谱分析仪通用规范》,频谱分析仪是能够在频域上有效地显示出构成时域信号的各个单独频谱分量(正弦波)的仪器。
频谱分析仪能够以模拟或数字方式显示信号的频域特性,实现信号失真度、调制度、稳定度等参数的测量,在射频领域有“射频万用表”的美称。传统的频谱分析仪基于“扫频式”原理,前端电路是一定带宽内可调谐的接收机,输入信号经变频器变频后由滤波器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。随着集成电路技术、快速A/D变换技术、频率合成技术、数字信号处理技术、微处理器技术的飞速发展,频谱分析仪无论从功能还是性能都得到了极大的扩展和提升。
现代的高端频谱分析仪采用了快速傅里叶变换技术,这种技术一方面将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,另一方面将被测信号数字化,使得频谱分析仪具备了矢量信号分析功能和实时频谱分析功能。基于此,当今的频谱分析仪也可称为矢量信号分析仪(或实时频谱分析仪)。
在具体下游应用领域方面,矢量信号分析仪广泛应用于卫星通讯、雷达、频谱监测、半导体、新能源、人工智能、物联网、 汽车 电子、医疗电子、航空航天和国防、电子对抗、教育科研等行业。
矢量网络分析仪
根据行业标准《SJ/T 11433-2012 矢量网络分析仪通用规范》,矢量网络分析仪是一种能完成复传输和复反射S参数测量和分析的仪器,能够对单端口、两端口或多端口网络的S参数进行测量和分析,具有按某种误差模型的要求,进行测量校准、自动修正误差的能力。
矢量网络分析仪结合了频谱分析仪技术、信号发生器技术以及矢量网络分析技术等各项技术,是射频微波领域必备的测试测量仪器,并且是诸多行业专用仪器的基础形态。
矢量网络分析仪会利用自带的信号发生器向被测件发射信号,再通过对折返的信号进行分析,获取待测件的信息属性。
射频信号发生器
射频信号发生器可在各种频率上产生射频信号,具有高光谱纯度、稳定的频率和振幅,不仅可以生成任意波形信号,还可以将任意波形信号上变频成射频微波信号,是无线电设备和射频微波器件研发、制造、维修、检测的必要设备,具体功能包括生成矢量调制信号、电磁兼容、微波信号产生、时钟测试和安规认证等。广泛分布于通讯、半导体、新能源、 汽车 电子、医疗电子、消费电子、航空航天、教育科研等行业。
——射频三大件市场规模稳步增长,中国市场增速快于全球市场增速
随着航空航天、5G商用化、 汽车 智能化、物联网、半导体等行业的快速发展,全球射频三大件产品的市场需求快速增长。结合弗若斯特沙利文、Technavio等机构的统计测算数据,测算2021-2025年全球射频三大件市场规模年复合增长率在5.7%左右,到2025年全球射频三大件市场规模将达到270亿元左右。
注:市场规模口径包含频谱和网络分析仪、信号发生器市场规模数据依据2021年人民币与美元平均汇率进行换算。
在中国市场方面,受益于5G商用化进程、新基建工程、智能网联 汽车 的快速推进,中国射频三大件市场在近几年快速增长,且市场增速快于全球市场增速。结合Technavio、弗若斯特沙利文、灼识咨询等机构测算数据,测算2021-2025年中国射频三大件市场规模年复合增长率在8%左右,到2025年中国射频三大件市场规模将接近100亿元。
注:市场规模口径包含频谱和网络分析仪、信号发生器市场规模数据依据2021年人民币与美元平均汇率进行换算。
根据灼识咨询的统计测算数据,在频谱分析仪、网络分析仪和信号发生器这三大产品构成的市场中,频谱分析仪市场占比最大,达到39.7%,接近40%信号发生器和矢量网络分析仪市场占比相近,均在30%左右,具体占比分别为30.5%和29.8%。
——射频三大件带动下游万亿级市场发展
射频三大件与下游应用领域的发展是相辅相成的,射频三大件本身市场规模虽然相对较小,但射频三大件产品是下游应用领域发展所必须的基础测量设备。
下游5G通信、商业航天、物联网、半导体、毫米波雷达、卫星通信等领域产品和技术的升级与发展需要更高性能的仪器来实现相关指标的测量与测试。射频三大件产品可以对复杂的信号进行频谱测量分析、频谱监测、调制与解调、电路网络分析、电磁兼容测试等,并且能够结合相关软件为下游应用提供全面的测量测试解决方案。因此射频三大件是典型的“小口径,大带动”产品,射频三大件产品技术与性能的提升,将辐射带动下游行业的快速发展。
典型下游应用领域的市场状况方面,物联网领域,根据赛迪统计测算数据,2021年中国物联网市场规模达到2.63万亿元5G领域,根据中国信息通信研究院统计测算数据,2021年5G直接带动经济总产出1.3万亿元半导体领域,根据美国半导体行业协会(SIA)统计数据,2021年中国半导体行业销售额达到1925亿美元汽车 电子领域,根据中国 汽车 工业协会统计测算数据,2021年中国 汽车 电子市场规模达到8894亿元卫星通信领域,根据赛迪无线电管理研究所统计测算数据,测算2021年中国卫星通信产业市场规模在900亿元左右。
在应用场景方面,射频信号发生器是对无线电信号进行测量的必备工具,在高频率范围的信号中应用尤其广泛频谱和矢量网络分析仪方面,主要用于研发、生产测试、现场维护和教育教学等,高端产品主要应用在高性能射频器件开发、毫米波通信系统和前沿研究。
从具体的应用领域来看,射频三大件的下游应用行业基本相同,具体包括半导体、消费电子、移动通信、 汽车 电子、自动驾驶、车联网、物联网、国防与航空航天、科研与教育等,其中多个下游应用行业加速发展,有望催化测量仪器需求的高速增长。
2、中国射频三大件市场竞争格局
——产品技术端:国内厂商实现了高端化突破,电科思仪和成都玖锦处于第一梯队
近年来,国内厂商在产品方面实现了高端化突破。成都玖锦、电科思仪等国内高端产品厂商信号发生器、信号分析仪和矢量网络分析仪等产品均突破了50GHz,均可对标国际一线品牌同类仪器指标。
综合来看,在射频三大件方面,国内厂商与国外厂商的技术水平差距已然不大,部分国内厂商具备一定的实力与国外厂商进行横向比较。
在具体企业的产品性能方面,电科思仪在射频三大件产品中均代表了国内厂商的最高水平,其次是成都玖锦,其射频三大件产品性能紧随其后,均接近国内厂商的最高水平。
根据国内企业各产品数据手册以及企业公告等公开资料的整理和分析,对中国射频三大件市场相关企业进行了技术层面的竞争格局划分。电科思仪和成都玖锦处于产品性能的第一梯队,鼎阳 科技 、普源精电、创远仪器、优利德等企业位于产品性能的第二梯队。
——市场布局端:国内厂商紧抓窗口机遇期,基本实现了高中低端市场的全面覆盖
市场端方面,新冠疫情带来的全球产业链重构为国内厂商带来了窗口机遇期,国内厂商例如普源精电、鼎阳 科技 、优利德等,纷纷通过IPO募集资金,以期抓住机会窗口,进一步扩大在国内市场的影响力。
在原本外国厂商垄断的高端市场实现国产化突破之后,以电科思仪、成都玖锦、鼎阳 科技 、普源精电等企业为代表的国内厂商已经基本实现了国内高中低端市场的全面覆盖。
——市场竞争端:上市企业营收快速增长,国内厂商地位不断提升,高端产品市场替代空间更为广阔
此处选取了电子测量仪器行业中对射频三大件相关业务进行数据披露的企业进行汇总分析,普源精电采用其射频类仪器业务营收,鼎阳 科技 采用其波形和信号发生器、频谱和矢量网络分析仪业务营收,创远仪器采用其信号分析与频谱分析、矢量网络分析业务营收。
通过汇总发现,2018-2020年选取企业射频三大件相关业务增长势头迅猛,2019年选取企业射频三大件相关业务营收增长29.92%,2020年选取企业射频三大件相关业务营收增长24.41%与此同时,选取企业射频三大件相关业务在中国市场中的占比也逐年提升。综合以上数据,从一定程度上说明了中国市场中国内厂商的市场地位在不断提升。
注:普源精电与鼎阳 科技 尚未发布2021年整年细分产品数据,因此此处2021年数据仅包含普源精电和鼎阳 科技 相关业务的2021年上半年数据。
根据弗若斯特沙利文的统计及测算数据,在整个中国电子测量仪器市场中,是德 科技 、罗德与施瓦茨、安立、泰克、力科等国外厂商的市场份额总和在40%左右,由于高端产品市场几乎被国外厂商垄断,由此可见在高端产品市场,国外厂商的市场份额远在40%以上。
上述上市公司产品主要定位于中端,但除此之外,国内已经实现高端化突破的企业,例如电科思仪、成都玖锦等,目前并未上市,其信号发生器、信号分析仪和矢量网络分析仪等产品均突破了50GHz,均可对标国际一线品牌同类仪器指标,已经成为了国外厂商在中国高端产品市场的直接竞争对手,因此在高端射频三大件产品领域,存在着广阔的竞争与国产化替代空间。
3、中国射频三大件国产替代路径:国产替代已是大势所趋,国内厂商如何破局
——突破技术壁垒
射频信号发生器、频谱和矢量网络分析仪技术核心主要基于射频微波电路和数字信号处理等学科,产品主要的技术门槛在于射频微波电路设计以及数字信号分析算法、软件平台等,涉及到较多的微波电磁波和通信理论,应用的射频芯片技术复杂且成本较高,前期研发投入大。
与此同时,随着5G通信、雷达、物联网、 汽车 电子、卫星通信等下游应用领域的快速发展,使得频域信号测量的应用范围得到扩展,下游应用领域对于频域测量仪器的性能提出了更高的要求,因此要实现国产替代,必须需要突破中高端射频三大件产品的技术壁垒 ,例如当产品达到26.5GHz的测量频率范围后,产品的射频芯片、射频材料、射频连接、微波仿真、微组装电路工艺等相关技术的设计难度和成本也迅速提升,因此中高端的射频三大件产品具有较高的技术壁垒,需要迫切地实现中高端产品的自主可控。
突破技术壁垒就意味着需要投入大量的人力和资金,众多国内厂商纷纷加大投入,加快自主研发脚步。以成都玖锦为例,其投入大量的研发人员与研发资金,其中研发人员占比达到66%,研发费用占比达到35%,均领先行业内的其他企业。这样的做法带来的成效也是极其显著的,经过多年技术积累,成都玖锦通过自主掌握的“宽频段超带宽多通道信号生成及模拟技术”、“宽带高隔离激励源和多通道信号分离接收技术”、“宽频段大动态宽带信号接收和分析技术”、“高速数字采集与处理技术”等四大硬核技术,打破国际技术壁垒,开发了“信号分析仪”、“信号发生器”、“矢量网络分析仪”和“综合测试仪”等产品线,正在国内高端电子测试测量仪器市场迅速崛起。
——倾力品牌打造
近年来党和国家高度重视中国品牌的建设。自2017年起将每年5月10日设立为“中国品牌日”。新时代、新经济、新赛道背景下,品牌价值对于企业的重要性已毋庸置疑,从中国制造到中国创造,随着电子信息产业链的强化发展,高端科研仪器技术的国产替代,其难点不只在技术,更在于整个市场的一份“信任感”。
国产自主品牌的建设之道在于用互联网思维打造工业品牌,例如成都玖锦从诞生之日起,就定位高端技术,秉持“一群人、一件事、一颗心、一辈子”的人文主义和长期主义精神,投入到了高端电子测试测量仪器仪表的研发工作上。2022年成都玖锦也备受国家重视,入选了中国品牌日。
同时,在疫情防控常态化下,国产自主品牌紧密结合新时代传播渠道特色,创新打通线上线下进行国产品牌的传播与推广,打造自己的品牌阵地。
——重视市场培育与建设
在射频三大件所属的通用电子测试测量仪器领域,欧美有是德 科技 、泰克、力科和罗德与施瓦茨等行业优势企业,培育了更为成熟的使用者,其能够熟练理解和使用功能日趋复杂的通用电子测试测量仪器,在选择相关仪器时能够更好的鉴别产品的性能,选择一些性价比高的品牌。
由此可见,企业对于市场消费者使用习惯的培育与建设尤为重要,是打造市场和品牌护城河的一项有力手段。例如成都玖锦通过对国内客户消费/使用习惯的洞察,从市场需求和使用习惯的角度出发,使得其产品符合国内消费者的 *** 作习惯,无需适应新的 *** 作模式,极大地降低了产品使用的学习成本除此之外,成都玖锦产品具有出色的可扩展性和兼容性,极大地降低了用户相关产品生态的建设成本。上述两种方式均是快速实现国产替代的有效手段和途径。
再例如电科思仪最新发布的“天衡星”系列产品,除了在性能和功能方面具有优势以外,“天衡星”系列产品采用高清大屏呈现测量结果,多种参数一览无余,且支持多点触控、自定义 *** 控界面、“一键搜索”等功能,使 *** 作更为简洁高效。
4、总结:中国市场快速发展,国产化替代正当时
近年来中国射频三大件市场规模快速增长,并且带动下游万亿级市场进一步发展。与此同时,国内厂商无论是在市场地位方面还是产品性能方面均得到了不同程度的提升和发展,尤其是技术水平的差距进一步缩小。综合来看,万事俱备,国产化替代正当时。
在国产化替代方面,不同企业选择了不同的实施路径,部分企业着力于实现技术壁垒的突破,部分企业倾力于品牌的打造,部分企业重视市场培育与建设,部分企业则多管齐下,致力于走出一条可持续化发展的国产替代之路。
以上内容来源于网络,侵删!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)