最近,金钟教授团队提出通过氢氟酸(HF)溶液对砷烯进行表界面处理的湿化学法,成功地将半金属性的灰砷烯纳米片可控地转化为半导体性的玻璃态砷烯纳米片的有效途径。并系统性地探究了玻璃化过程的机理和玻璃态砷烯的光电性质。该湿化学处理过程可以在有或没有上表面聚合物涂层的保护下进行,通过对灰砷烯纳米片的表面进行不同的聚合物涂层保护,可以有选择性地对其实现单面或双面的可控玻璃化,并且能够很方便地转移到任意的平坦衬底上(图1)。例如,首先在砷烯纳米片上表面旋涂聚甲基丙烯酸甲酯(PMMA)膜,随后浸入HF水溶液中,可以成功实现从下表面开始的玻璃化,也可以通过直接将生长于云母衬底的砷烯纳米片浸入HF溶液中实现。在这种情况下,由于云母表面易受HF渗透,玻璃化从砷烯纳米片的两侧同时开始。通过详细的结构表征,证实了玻璃态砷烯纳米片具有典型的玻璃化特性,与高结晶度的原始灰砷烯有明显的结构差别。完全玻璃化的砷烯纳米片完美地保留了初始砷烯的六角形形状,并表现出典型的非晶态特性。通过采集部分玻璃化的砷烯纳米片的不同位置的TEM图像和SAED图案,可以清楚识别砷烯纳米片的玻璃化部分和未玻璃化部分的边界,揭示了砷烯纳米片的边缘区域比中间区域的玻璃化反应更为迅速。相对于中心区域,砷烯纳米片的边缘区域更易于被湿化学处理玻璃化(图2)。研究还发现,HF水溶液中溶解氧含量的提高,能够对灰砷烯纳米片的玻璃化过程反应速度起到很大的促进作用。详细的表征和测试研究表明,与原始灰砷烯纳米片的半金属特性不同,所制备的玻璃态砷烯纳米片在635 nm处有一个很强的光致发光峰,对应的光学带隙为1.95 eV。基于玻璃态砷烯纳米片的场效应晶体管表现出明显的p型半导体特性,载流子迁移率为~159.1 cm2 V-1 s-1(图3)。通过与马晶教授合作进行理论模拟计算和机理分析表明,灰砷烯纳米片的玻璃化过程是由于HF和溶解氧共同参与了对砷烯纳米片的刻蚀作用,消耗了砷烯界面和内部的一部分砷原子,从而形成了砷原子缺陷/空位和无序的原子结构,有效改变了砷烯的电子能级结构(图4)。这种新型的湿化学处理方法提供了一种能够诱导半金属性的灰砷烯向半导体性的玻璃态砷烯进行可控转变的有效策略,有目标、有针对性地调控了砷烯纳米片的电学和光学性质,从而为二维纳米材料的界面和能带结构调制提供了崭新的思路。
该研究成果以“Wet Chemistry Vitrification and Metal-to-Semiconductor Transition of Two-Dimensional Gray Arsenene Nanoflakes”为题发表在Advanced Functional Materials期刊上(DOI: 10.1002/adfm.202106529)。南京大学金钟教授和马晶教授为该论文的通讯作者。副研究员胡毅博士为该论文的第一作者。该研究工作得到了国家重点研发计划项目、军委 科技 委国防 科技 创新特区项目、国家自然科学基金项目、江苏省杰出青年基金、中央高校基本科研业务费专项资金等项目的资助。
图1. 湿化学法处理诱导灰砷烯纳米片玻璃化的原理示意图和显微照片。
图2. 部分玻璃化和完全玻璃化的砷烯纳米片的晶体结构表征。
图3. 晶态灰砷烯和玻璃态砷烯的电学输运性质对比。
图4. 砷烯纳米片玻璃化过程的机理研究。
非金属高导电性的本质是靠离子键或共价键连接,从物理性质看,非金属大多是绝缘体,只有少数非金属是导体(碳)或半导体(硅)。
因为非金属材料中的电子或载流子随着温度的升高,运动能力加强,传递电荷的能力增强,导电性就增加了。
物理性质:
非金属单质大多是分子晶体,少部分为原子晶体和过渡型的层状晶体。
单质共价键数大部分符合8-N规则:
1、稀有气体:8-8=0(2-2=0),为单原子分子。
2、卤素,氢:8-7=1(2-1=1),为双原子分子。
3、VIA族的硫、硒、碲:8-6=2,为二配位的链形与环形分子。
4、VA族的磷、砷:8-5=3,为三配位的有限分子P4、As4,灰砷和黑磷为层状分子。
5、IVA族的碳、硅:8-4=4,为四配位的金刚石型结构。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)