半导体器件(semiconductor device)通常,利用不同的半导体材料、采用不同的工艺和几何结构,已研制出种类繁多、功能用途各异的多种晶体二极体,晶体二极体的频率覆盖范围可从低频、高频、微波、毫米波、红外直至光波。三端器件一 般是有源器件,典型代表是各种电晶体(又称晶体三极体)。电晶体又可以分为双极型电晶体和场效应电晶体两 类。根据用途的不同,电晶体可分为功率电晶体微波电晶体和低噪声电晶体。除了作为放大、振荡、开关用的 一般电晶体外,还有一些特殊用途的电晶体,如光电晶体、磁敏电晶体,场效应感测器等。这些器件既能把一些 环境因素的信息转换为电信号,又有一般电晶体的放大作用得到较大的输出信号。此外,还有一些特殊器件,如单结电晶体可用于产生锯齿波,可控矽可用于各种大电流的控制电路,电荷耦合器件可用作摄橡器件或信息存 储器件等。在通信和雷达等军事装备中,主要靠高灵敏度、低噪声的半导体接收器件接收微弱信号。随着微波 通信技术的迅速发展,微波半导件低噪声器件发展很快,工作频率不断提高,而噪声系数不断下降。微波半导体 器件由于性能优异、体积小、重量轻和功耗低等特性,在防空反导、电子战、C(U3)I等系统中已得到广泛的套用 。
分类 晶体二极体晶体二极体的基本结构是由一块 P型半导体和一块N型半导体结合在一起形成一个 PN结。在PN结的交界面处,由于P型半导体中的空穴和N型半导体中的电子要相互向对方扩散而形成一个具有空间电荷的偶极层。这偶极层阻止了空穴和电子的继续扩散而使PN结达到平衡状态。当PN结的P端(P型半导体那边)接电源的正极而另一端接负极时,空穴和电子都向偶极层流动而使偶极层变薄,电流很快上升。如果把电源的方向反过来接,则空穴和电子都背离偶极层流动而使偶极层变厚,同时电流被限制在一个很小的饱和值内(称反向饱和电流)。因此,PN结具有单向导电性。此外,PN结的偶极层还起一个电容的作用,这电容随着外加电压的变化而变化。在偶极层内部电场很强。当外加反向电压达到一定阈值时,偶极层内部会发生雪崩击穿而使电流突然增加几个数量级。利用PN结的这些特性在各种套用领域内制成的二极体有:整流二极体、检波二极体、变频二极体、变容二极体、开关二极体、稳压二极体(曾讷二极体)、崩越二极体(碰撞雪崩渡越二极体)和俘越二极体(俘获电浆雪崩渡越时间二极体)等。此外,还有利用PN结特殊效应的隧道二极体,以及没有PN结的肖脱基二极体和耿氏二极体等。
双极型电晶体它是由两个PN结构成,其中一个PN结称为发射结,另一个称为集电结。两个结之间的一薄层半导体材料称为基区。接在发射结一端和集电结一端的两个电极分别称为发射极和集电极。接在基区上的电极称为基极。在套用时,发射结处于正向偏置,集电极处于反向偏置。通过发射结的电流使大量的少数载流子注入到基区里,这些少数载流子靠扩散迁移到集电结而形成集电极电流,只有极少量的少数载流子在基区内复合而形成基极电流。集电极电流与基极电流之比称为共发射极电流放大系数?。在共发射极电路中,微小的基极电流变化可以控制很大的集电极电流变化,这就是双极型电晶体的电流放大效应。双极型电晶体可分为NPN型和PNP型两类。
场效应电晶体它依靠一块薄层半导体受横向电场影响而改变其电阻(简称场效应),使具有放大信号的功能。这薄层半导体的两端接两个电极称为源和漏。控制横向电场的电极称为栅。
根据栅的结构,场效应电晶体可以分为三种:
①结型场效应管(用PN结构成栅极)
②MOS场效应管(用金属-氧化物-半导体构成栅极,见金属-绝缘体-半导体系统)
③MES场效应管(用金属与半导体接触构成栅极)其中MOS场效应管使用最广泛。尤其在大规模积体电路的发展中,MOS大规模积体电路具有特殊的优越性。MES场效应管一般用在GaAs微波电晶体上。
在MOS器件的基础上,又发展出一种电荷耦合器件 (CCD),它是以半导体表面附近存储的电荷作为信息,控制表面附近的势阱使电荷在表面附近向某一方向转移。这种器件通常可以用作延迟线和存储器等配上光电二极体列阵,可用作摄像管。
命名方法中国半导体器件型号命名方法
半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、雷射器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:
第一部分:用数字表示半导体器件有效电极数目。2-二极体、3-三极体
第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极体时:A-N型锗材料、B-P型锗材料、C-N型矽材料、D-P型矽材料。表示三极体时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型矽材料、D-NPN型矽材料。
第三部分:用汉语拼音字母表示半导体器件的类型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc3MHz,Pc<1W)、D-低频大功率管(f1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-雷射器件。
第四部分:用数字表示序号
第五部分:用汉语拼音字母表示规格号
例如:3DG18表示NPN型矽材料高频三极体
日本半导体分立器件型号命名方法
日本生产的半导体分立器件,由五至七部分组成。通常只用到前五个部分,其各部分的符号意义如下:
第一部分:用数字表示器件有效电极数目或类型。0-光电(即光敏)二极体三极体及上述器件的组合管、1-二极体、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。
第二部分:日本电子工业协会JEIA注册标志。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。
第三部分:用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控矽、G-N控制极可控矽、H-N基极单结电晶体、J-P沟道场效应管、K-N 沟道场效应管、M-双向可控矽。
第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从"11"开始,表示在日本电子工业协会JEIA登记的顺序号不同公司的性能相同的器件可以使用同一顺序号数字越大,越是产品。
第五部分: 用字母表示同一型号的改进型产品标志。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。
美国半导体分立器件型号命名方法
美国电晶体或其他半导体器件的命名法较混乱。美国电子工业协会半导体分立器件命名方法如下:
第一部分:用符号表示器件用途的类型。JAN-军级、JANTX-特军级、JANTXV-超特军级、JANS-宇航级、(无)-非军用品。
第二部分:用数字表示pn结数目。1-二极体、2=三极体、3-三个pn结器件、n-n个pn结器件。
第三部分:美国电子工业协会(EIA)注册标志。N-该器件已在美国电子工业协会(EIA)注册登记。
第四部分:美国电子工业协会登记顺序号。多位数字-该器件在美国电子工业协会登记的顺序号。
第五部分:用字母表示器件分档。A、B、C、D、┄┄-同一型号器件的不同档别。如:JAN2N3251A表示PNP矽高频小功率开关三极体,JAN-军级、2-三极体、N-EIA 注册标志、3251-EIA登记顺序号、A-2N3251A档。
国际电子联合会半导体器件型号命名方法
德国、法国、义大利、荷兰、比利时等欧洲国家以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件型号命名方法。这种命名方法由四个基本部分组成,各部分的符号及意义如下:
第一部分:用字母表示器件使用的材料。A-器件使用材料的禁频宽度Eg=0.6~1.0eV 如锗、B-器件使用材料的Eg=1.0~1.3eV 如矽、C-器件使用材料的Eg>1.3eV 如砷化镓、D-器件使用材料的Eg<0.6eV 如锑化铟、E-器件使用复合材料及光电池使用的材料
第二部分:用字母表示器件的类型及主要特征。A-检波开关混频二极体、B-变容二极体、C-低频小功率三极体、D-低频大功率三极体、E-隧道二极体、F-高频小功率三极体、G-复合器件及其他器件、H-磁敏二极体、K-开放磁路中的霍尔元件、L-高频大功率三极体、M-封闭磁路中的霍尔元件、P-光敏器件、Q-发光器件、R-小功率晶闸管、S-小功率开关管、T-大功率晶闸管、U-大功率开关管、X-倍增二极体、Y-整流二极体、Z-稳压二极体。
第三部分:用数字或字母加数字表示登记号。三位数字-代表通用半导体器件的登记序号、一个字母加二位数字-表示专用半导体器件的登记序号。
第四部分:用字母对同一类型号器件进行分档。A、B、C、D、E┄┄-表示同一型号的器件按某一参数进行分档的标志。
除四个基本部分外,有时还加后缀,以区别特性或进一步分类。常见后缀如下:
1、稳压二极体型号的后缀。其后缀的第一部分是一个字母,表示稳定电压值的容许误差范围,字母A、B、C、D、E分别表示容许误差为±1%、±2%、±5%、±10%、±15%其后缀第二部分是数字,表示标称稳定电压的整数数值后缀的第三部分是字母V,代表小数点,字母V之后的数字为稳压管标称稳定电压的小数值。
2、整流二极体后缀是数字,表示器件的最大反向峰值耐压值,单位是伏特。
3、晶闸管型号的后缀也是数字,通常标出最大反向峰值耐压值和最大反向关断电压中数值较小的那个电压值。
如:BDX51-表示NPN矽低频大功率三极体,AF239S-表示PNP锗高频小功率三极体。
积体电路把晶体二极体、三极体以及电阻电容都制作在同一块矽晶片上,称为积体电路。一块矽晶片上集成的元件数小于 100个的称为小规模积体电路,从 100个元件到1000 个元件的称为中规模积体电路,从1000 个元件到100000 个元件的称为大规模积体电路,100000 个元件以上的称为超大规模积体电路。积体电路是当前发展计算机所必需的基础电子器件。许多工业先进国家都十分重视积体电路工业的发展。积体电路的集成度以每年增加一倍的速度在增长。每个晶片上集成256千位的MOS随机存储器已研制成功,正在向1兆位 MOS随机存储器探索。
光电器件 光电探测器光电探测器的功能是把微弱的光信号转换成电信号,然后经过放大器将电信号放大,从而达到检测光信号的目的。光敏电阻是最早发展的一种光电探测器。它利用了半导体受光照后电阻变小的效应。此外,光电二极体、光电池都可以用作光电探测元件。十分微弱的光信号,可以用雪崩光电二极体来探测。它是把一个PN结偏置在接近雪崩的偏压下,微弱光信号所激发的少量载流子通过接近雪崩的强场区,由于碰撞电离而数量倍增,因而得到一个较大的电信号。除了光电探测器外,还有与它类似的用半导体制成的粒子探测器。
半导体发光二极体半导体发光二极体的结构是一个PN结,它正向通电流时,注入的少数载流子靠复合而发光。它可以发出绿光、黄光、红光和红外线等。所用的材料有 GaP、GaAs、GaAs1-xPx、Ga1-xAlxAs、In1-xGaxAs1-yPy等。
半导体雷射器如果使高效率的半导体发光管的发光区处在一个光学谐振腔内,则可以得到雷射输出。这种器件称为半导体雷射器或注入式雷射器。最早的半导体雷射器所用的PN结是同质结,以后采用双异质结结构。双异质结雷射器的优点在于它可以使注入的少数载流子被限制在很薄的一层有源区内复合发光,同时由双异质结结构组成的光导管又可以使产生的光子也被限制在这层有源区内。因此双异质结雷射器有较低的阈值电流密度,可以在室温下连续工作。
光电池当光线投射到一个PN结上时,由光激发的电子空穴对受到PN结附近的内在电场的作用而向相反方向分离,因此在PN结两端产生一个电动势,这就成为一个光电池。把日光转换成电能的日光电池很受人们重视。最先套用的日光电池都是用矽单晶制造的,成本太高,不能大量推广使用。国际上都在寻找成本低的日光电池,用的材料有多晶矽和无定形矽等。
其它利用半导体的其他特性做成的器件还有热敏电阻、霍耳器件、压敏元件、气敏电晶体和表面波器件等。
未来发展今年是摩尔法则(Moore'slaw)问世50周年,这一法则的诞生是半导体技术发展史上的一个里程碑。
这50年里,摩尔法则成为了信息技术发展的指路明灯。计算机从神秘不可近的庞然大物变成多数人都不可或缺的工具,信息技术由实验室进入无数个普通家庭,网际网路将全世界联系起来,多媒体视听设备丰富著每个人的生活。这一法则决定了信息技术的变化在加速,产品的变化也越来越快。人们已看到,技术与产品的创新大致按照它的节奏,超前者多数成为先锋,而落后者容易被淘汰。
这一切背后的动力都是半导体晶片。如果按照旧有方式将电晶体、电阻和电容分别安装在电路板上,那么不仅个人电脑和移动通信不会出现,连基因组研究、计算机辅助设计和制造等新科技更不可能问世。有关专家指出,摩尔法则已不仅仅是针对晶片技术的法则不久的将来,它有可能扩展到无线技术、光学技术、感测器技术等领域,成为人们在未知领域探索和创新的指导思想。
毫无疑问,摩尔法则对整个世界意义深远。不过,随着电晶体电路逐渐接近性能极限,这一法则将会走到尽头。摩尔法则何时失效?专家们对此众说纷纭。早在1995年在芝加哥举行信息技术国际研讨会上,美国科学家和工程师杰克·基尔比表示,5纳米处理器的出现或将终结摩尔法则。中国科学家和未来学家周海中在此次研讨会上预言,由于纳米技术的快速发展,30年后摩尔法则很可能就会失效。2012年,日裔美籍理论物理学家加来道雄在接受智囊网站采访时称,"在10年左右的时间内,我们将看到摩尔法则崩溃。"前不久,摩尔本人认为这一法则到2020年的时候就会黯然失色。一些专家指出,即使摩尔法则寿终正寝,信息技术前进的步伐也不会变慢。
图书信息书 名: 半导体器件
作 者:布伦南高建军刘新宇
出版社:机械工业出版社
出版时间: 2010年05月
ISBN: 9787111298366
定价: 36元
内容简介《半导体器件:计算和电信中的套用》从半导体基础开始,介绍了电信和计算产业中半导体器件的发展现状,在器件方面为电子工程提供了坚实的基础。内容涵盖未来计算硬体和射频功率放大器的实现方法,阐述了计算和电信的发展趋势和系统要求对半导体器件的选择、设计及工作特性的影响。
《半导体器件:计算和电信中的套用》首先讨论了半导体的基本特性接着介绍了基本的场效应器件MODFET和M0SFET,以及器件尺寸不断缩小所带来的短沟道效应和面临的挑战最后讨论了光波和无线电信系统中半导体器件的结构、特性及其工作条件。
作者简介Kevin F Brennan曾获得美国国家科学基金会的青年科学家奖。2002年被乔治亚理工大学ECE学院任命为杰出教授,同年还获得特别贡献奖,以表彰他对研究生教育所作出的贡献。2003年,他获得乔治亚理工大学教职会员最高荣誉--杰出教授奖。他还是IEEE电子器件学会杰出讲师。
图书目录译者序
前言
第1章 半导体基础
1.1 半导体的定义
1.2 平衡载流子浓度与本征材料
1.3 杂质半导体材料
思考题
第2章 载流子的运动
2.1 载流子的漂移运动与扩散运动
2.2 产生-复合
2.3 连续性方程及其解
思考题
第3章 结
3.1 处于平衡状态的pn结
3.2 不同偏压下的同质pn结
3.3 理想二极体行为的偏离
3.4 载流子的注入、拉出、电荷控制分析及电容
3.5 肖特基势垒
思考题
第4章 双极结型电晶体
4.1 BJT工作原理
4.2 BJT的二阶效应
4.2.1 基区漂移
4.2.2 基区宽度调制/Early效应
4.2.3 雪崩击穿
4.3 BJT的高频特性
思考题
第5章结型场效应电晶体和金属半导体场效应电晶体
5.1 JFE
全风冷端面泵浦激光打标机EP10-1型
☆ 激光打标是以激光光子作为能量的载体,通过极细的激光光束聚焦后产生的高能量,来实现材料表面的标记。
☆ 激光打标属于非接触性加工,加工工 件不变形。
☆ 激光打标热影响区域小,具有精确的加工轨迹,加工速度高、质量好,可完成一些常规方法无法实现的工艺。
设备特点:
该设备采用国际领先技术生产,核心器件均从国外进口。其优点为:
1、是目前国内同类产品中体积最小的设备。
2、发光源采用半导体列阵,光光转换效率高。
3、热耗损低,无需单独配备冷却系统;无冷水箱,省去了换水的麻烦。
4、耗电少,500W/H左右。
5、性能稳定,整机免维护时间可达到15000小时,无需安装氪灯。
6、可对各类金属材质及某些非金属材质进行表面标刻,适用性非常强。
7、与计算机配合,可随意更改标刻图形和参数。
8、标刻效果精细、独特、永不磨损,具有防伪性。
适用材料:
可以在任何金属(含稀有金属)、工程塑料、电镀材料、镀膜材料、喷涂材料、塑料橡胶、环氧树脂等材料上标记分辨率高、非常美观的图像。
应用行业:
广泛应用于手机按键、塑胶透光按键、电子元器件、集成电路(IC)、电工电器、通讯产品、标牌、卫浴洁具、五金制品、工具配件、精密器械、眼镜钟表、珠宝首饰、汽车配件、箱包饰扣、刀具、锁具、炊具、不锈钢制品、PVC管材、医疗器械等行业。
主要参数:
型号 EP10-1
激光类型/波长 Nd:YAG/1064nm
激光峰值功率 ≥20KW
激光光束质量M2 <1.3
激光脉冲宽度 ≤8ns
功率稳定性(rms,>4h) <3%
激光模式 TEM00
打标范围 50mm x 50mm
70mm x70mm
110mm x 110mm等
打标深度 ≤1.5mm
最大打标线速 7000mm/s
最小打标线宽 ≤0.01mm
最小字符高度 ≤0.1mm
重复打标精度 ≤10μrad
耗电功率 ≤0.4KW
电力需求 220VAC/50Hz
外观尺寸:
应用实例:
●精细加工:端面泵浦激光光束质量高,标刻光点小于40微米,适合精细打标。
显微镜下观察不锈钢样品图片
(扩束器:×4场镜:F=160mm标刻速度:2000mm/s材料:不锈钢)
●照片打标:位图标刻依靠点的密度实现灰度的呈现,该光源聚焦光斑精细、高频率激光与扫描速度完美结合。
照片打标样品图片
(扩束器:×4场镜:F=160mm标刻速度:可调节材料:PE管材)
●PE管材:管材生产使用飞行标刻模式,该光源体积小巧,适合于在生产线上集成。
PE管材样品图片
(扩束器:×4场镜:F=160mm标刻速度:800mm/s材料:PE管材)
● 金银首饰:该光源聚焦光斑精细,峰值功率高,标刻效果精美。
首饰样品图片
(扩束器:×4场镜:F=100mm标刻速度:100mm/s材料:彩金)
●不锈钢打白:该工艺需要光点排布细密和高的峰值功率。
不锈钢打白样品图片
(扩束器:×4场镜:F=160mm标刻速度:1500mm/s材料:不锈钢)
●透光按键:需要光点整齐、稳定,多模光斑带来的热效应小。
透光按键样品图片
(扩束器:×4场镜:F=254mm标刻速度:500mm/s材料:塑料)
●汽车零部件:材料强度大,需要高峰值功率和高的加工速度。
汽车零部件样品图片
(扩束器:×4场镜:F=160mm标刻速度:500mm/s材料:钢)
疑问解答:
1. 该光源平均功率只有2W,为什么如此小的功率却能轻易的切割0.16mm厚的金属名片?
答:激光能够标刻金属,主要原因在于其具有高的峰值功率。这一点是最主要而又最容易被忽视的。
我们以50W侧泵半导体激光器为例:在10KHz情况下,平均功率仅有不到20瓦,脉宽为100ns;
峰值功率=平均功率/(频率×脉宽)=20W/(10KHz×100ns)=20KW
而MPL-N-1064型端泵激光光源,在10KHz情况下,平均功率为2瓦,但是脉宽只有7ns。
峰值功率=平均功率/(频率×脉宽)=2W/(10KHz×7ns)=30KW
由此可见,在常规加工情况下,2瓦端泵激光器的峰值功率还是要高于侧泵水冷激光器的,而且其性价比优势更是高于侧泵水冷机。
2. 光纤激光器受制于器件质量和结构影响,故障率始终居高不下。该款端泵激光光源如何实现高的使用寿命?
答:光纤激光器的故障率始终是令各大厂商头疼的问题之一。该款激光光源标刻效果精细,在绝大多数场合已能够完全代替光纤激光器。该款激光器采用全封闭光路设计,环境适应能力强,谐振腔设计由具有十余年丰富经验的工程师团队完成,辅以优良的工艺性,实现了连续两年返修率均低于3%。
3. 端面泵浦激光具有什么特点?
答:1. 峰值功率高,达到30KW,是50瓦半导体水冷激光器的两倍。
2. 脉宽窄,更有利于高峰值能量的积累。
3. 激光频率高,达到光点密度与加工速度的完美结合。
4. 光束质量好,M方因子小于1.3,光斑圆度高。
5. 脉冲尖峰序列稳定,光斑一致性好。
激光是近代科学技术中的重大发明之一。随着半导体激光二极管技术的重大突破,固体激光器得到强劲的发展,其应用领域不断地扩展。其中最为重要的是用半导体激光器和半导体列阵激光器泵浦固体激光器技术的发展,这是一种高效率、长寿命、光束质量高、稳定性好、结构紧凑小型化的第二代新型固体激光器,目前在空间通讯,光纤通信,大气研究,环境科学,医疗器械,光学图象处理,激光打印机等高科技领域有着独具特色的应用前景。激光二极管泵浦固体激光器(Diode Pumped Solid state Laser-DPSSL)的种类很多,可以是连续的、脉冲的、调Q的,以及加倍频混频等非线性转换的。工作物质的形状有圆柱和板条状的。而泵浦的耦合方式可分为端面泵浦和侧面泵浦,其中端面泵浦又可分为直接端面泵浦和光纤耦合端面泵浦两种结构。
相对于侧面泵浦方式,端面泵浦的效率较高。这是因为,在泵浦激光模式不太差的情况下,泵浦光都能由会聚光学系统耦合到工作物质中,耦合损失较少;另一方面,泵浦光也有一定的模式,而产生的振荡光的模式与泵浦光模式有密切关系,匹配的效果好,因此,工作物质对泵浦光的利用率也相对高一些。
正是由于端面泵浦方式效率高、模式匹配好、波长匹配的优点近年来在国际上发展极为迅速,已成为激光学科的重点发展方向之一。它在激光打标、激光微加工、激光印刷、激光显示技术、激光医学和科研等领域都有广泛的用途,具有很大的市场潜力。
2.端面泵浦固体激光器的泵浦耦合方式
2.1 直接端面泵浦
如图 1 所示的直接端面泵浦的结构示意图。它包括三个部分: 激光二极管泵浦源(由激光二极管阵列、驱动源和致冷器组成) ,光学耦合系统和激光棒和谐振腔。泵浦所用的激光二极管阵列出射的泵浦光,经由会聚光学系统将泵浦光耦合到晶体棒上,在晶体棒左端面镀有多层介质膜,对泵浦光的相应波长为高透、而对产生的激光束的相应波长为高反,腔的输出镜为镀有多层介质膜的凹面镜。
直接端面泵浦
然而,直接端面泵浦的激光器虽然结构型式紧凑,转换效率高,基模光强分布较好,但固体激光的输出功率受端面限制,因为端面较小时只能采用单元的激光二极管,最多只能相对两只激光二极管泵浦。这就限制了泵浦光的最大功率。如果采用功率较大的激光二极管阵列作泵浦源,则由于阵列型二极管输出的泵浦光模式不好,因而不易将泵浦光有效地耦合到工作物质中,实际上降低了效率。另一方面由于泵浦光的模式较为复杂,泵浦后输出的激光光束质量也不易保证。而且这种结构散热效果差,故一般只适合低功率激光器情况工作。
2.2 光纤耦合端面泵浦
针对直接端面泵浦方式的弱点,人们又进一步发展了光纤耦合的端面泵浦。端面泵浦激光器由激光二极管、两个聚焦系统、耦合光纤、工作物质和输出反射镜组成,如图 2 所示。与直接端面泵浦不同,这种结构首先把激光二极管发射的光束质量很差的激光耦合到光纤中,经过一段光纤传输后,从光纤中出射的光束变成发散角较小的、圆对称的、中间部分光强最大的泵浦光束。用这一输出的泵浦光去泵浦工作物质,由于它和振荡激光在空间上匹配得很好,因此泵浦效率很高。由于激光二极管或二极管阵列与光纤间的耦合较与工作物质的耦合容易,从而降低了对器件调整的要求。而且最重要的是这种耦合方式能使固体激光器输出模式好、效率高的激光束。
图2 光纤耦合端面泵浦
3.高功率端面泵浦固体激光器
3.1 高功率端面泵浦固体激光器存在的问题
在高功率端面泵浦固体激光器中,激光晶体吸收泵浦光而产生的热效应,对于激光器的稳定性、输出功率及效率、光束质量等有着直接影响,这使得端面泵浦设计存在高功率扩展问题。
但是热效应所产生的直接后果--热透镜效应和退偏,在很大程度上可通过优化腔设计加以消除。近年来就发展了很多用于提高输出功率的技术,如两路耦合,高功率泵浦源,多个泵浦源光纤捆匝,多个增益介质的多端面泵浦等等。这些技术相结合促进了端面泵浦固体激光器的发展。
3.2 几种高功率端面泵浦固体激光器的介绍
3.2.1 目前国内的高功率端面泵浦固体激光器
双端泵浦双 Nd∶YVO4 激光器:
在适于激光二极管泵浦的众多激光晶体中, Nd∶YVO4 晶体因在 1064nm 处的受激发射截面大,在 808nm处的吸收系数高,以及吸收谱线宽等参数均优于其它现有的晶体材料,而倍受人们的关注[1]。
为了提高固体激光器的输出功率可以利用多个激光晶体串接的方式。多棒串接实际上是光束相干合成的一种技术方案,其优点是输出功率可与棒数成比例的增加[2], 获得更大的模体积[3,4]和高的光-光转换效率。研究也同时表明,采用平行平面腔结构,整个系统可以得到与棒数成比例的激光输出,且不会降低光束质量,将两根或多根 Nd:YAG 晶体串接起来使用,增加了工作物质的长度,获得了更大的模体积,从而得到了高功率的输出[5]。
双Nd∶YVO4 晶体激光器,将晶体的端面镀膜作为谐振腔的端面镜,构成了平行平面谐振腔。对平行平面谐振腔等效腔进行理论分析后得出激光晶体吸收泵浦光产生的热透镜效应对保持腔的稳定性起到了重要的作用,使得等效腔迅速达到其几何的稳定腔[6],在发展输出功率为数百瓦至数千瓦量级的高功率固体激光器中,常采用多棒串接的技术方案。
在国内首次进行了双端泵浦双 Nd∶YVO4 激光器的实验研究,在抽运功率为 20.74W 时获得了 11W 的 1064nm TEM00 模激光输出,其光-光转化效率约为 53% 。图 3 为双端泵浦双棒串接 Nd∶YVO4 实验装置图[7]。
图3 双端泵浦双 Nd∶YVO4 激光器
二极管端面泵浦混合腔Nd:YVO4 板条激光器:
近年来关于端面泵浦固体激光器的研究热点之一,是如何有效地对激光晶体进行冷却,降低热效应的影响,从而在得到高功率的激光输出的同时,又保证好的光束质量。在众多的研究工作中,采用了板条或者薄片状的激光晶体,由于对其进行大面积的冷却的方法,取得了令人瞩目的成就。
新型的混合腔板条激光器不但具备板条激光器高效冷却的优点,更具有传统板条激光器所不具备的优势。它利用薄的片状晶体(1mm)来做激光器的增益介质,片状晶体的两个表面都被紧贴在热沉上,结合混合腔,使其输出光束的远场近似为高斯分布,具备很好的光束质量[8]。
目前采用这种新型的板条激光器结构,在国内实现了此类激光器的连续运转,得到了波长为
1064nm 稳定的连续激光输出,当泵浦功率为 60.5W 时,输出功率达到 16.2W 。
该激光器的装置原理图如图 4 所示[9]。
板条激光器谐振腔由一个凹面镜和一个柱面镜组成,其中凹面镜为后腔镜,曲率半径 250mm ,镀有 808nm 的增透膜和 1064nm 的全反膜;柱面镜为前腔镜,并耦合输出激光,曲率半径 150mm ,镀有 1064nm的全反膜,两腔镜如图 4b 所示,放于共焦位置,腔长为 50mm 。[9]
3.2.2 近年来国外的高功率端面泵浦固体激光器
端面泵浦高功率运转固体激光器:
图5 所示的美国加州大学端面泵浦高功率运转固体激光器[10]是美国加州大学和美国Lawrence Livermore国家实验室合作,在1999年,进一步提高光束质量之后,采用 LD 端泵Yb:YAG棒获得 200W 连续波和重复频率 5kHz、195W 调 Q 输出,在光束质量 M2=2.4 时获得183W 调 Q 输出。同时增加了谐振腔设计的灵活性,运用腔内双折射补偿得到偏振光输出,提高了效率,得到光束质量 M2=3.2的112W连续波偏振光输出。[11]
图5 美国加州大学端面泵浦高功率运转固体激光器
二极管列阵端面泵浦Yb:TAG固体激光器:
图6 二极管列阵端面泵浦 Yb:TAG 的实验装置图
图 6 是 LLNL 实验室用二极管列阵端面泵浦 Yb:TAG 的示意图[12]。实验中的泵浦源是由36个带微柱透镜的LD bars构成,每个bar的长度为15mm,采用硅基质的微沟道制冷。泵浦模块分为上下两部分,激光由中间的一个直径为6mm的圆孔通过。半导体列阵发出的泵浦光通过一个耦合透镜,进入晶体。耦合透镜是由熔融石英制成的柱面透镜与中间掏空的锲形铝光传导管组成。在石英透镜的中间开有一个小孔,允许激光顺利通过。铝管内表面呈四棱台状,且镀有薄薄的一层银用来反射泵浦光。该耦合透镜可以将两束 50×15mm2 的泵浦光会聚成 4.6×2.6mm2 的长形光斑,压缩比为63。为了减少装置设计带来的损耗,该实验中的晶体为复合棒结构,即在晶体棒的两端有两个长为 15mm 端帽,端帽中没有掺杂激活离子,端帽的一端为与泵浦光的形状相匹配的矩形,一端为与晶体棒相粘接的圆形。此外,晶体四周被抛光,且晶体棒中心处的直径为2mm ,长为50mm,由中心向两端,直径逐渐增加,与两个端帽衔接处的直径为2.2mm。此设计可以有效地减少由于抛光所引起的放大的自发辐射损耗以及寄生振荡损耗。当采用了可以进行热致双折射补偿的双棒泵浦腔结构之后,便获得了1080W 的基频输出,光光效率为27.5% ,电光效率为 12.3%。
4.国内外高功率端面泵浦固体激光器的应用
在应用上,端面泵浦固体激光器以材料加工为主,包括了常规的激光加工:主要是材料加工,如激光标记、激光焊接、激光切割和打孔等。结构紧凑、性能良好、工作可靠的端面泵浦固体激光打标机产品系列已经在国内得到了规模应用,激光微加工、激光精密加工也都有广泛推广的趋势。在国外,千瓦级的二极管端面泵浦固体激光器已有产品,目前主要受限于成本和市场需求的限制。
除材料加工外,大功率二极管端面泵浦固体激光器还可以用于激光核聚变、科学研究、医疗、检测、分析、通讯、投影显示以及军事国防等领域,因而具有极其重要的应用价值。
5.结束语
我国在低功率端面泵浦固体激光器(<200mw)技术比较成熟,产业化(光通讯应用较多)也蓬勃发展。但是目前国外端面泵浦固体激光器市场化水平已经达到数百瓦,实验室水平已经达到千瓦级。而国内的大功率端面泵浦固体激光器发展一直具有局限性,应该积极进行这方面的研究,如果能实现产业化的发展,则必将带来巨大的经济效益和社会效益。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)