我们公司是做实验室设备的,最近考虑搬迁到产业园中,

我们公司是做实验室设备的,最近考虑搬迁到产业园中,,第1张

亚瑟半导体设备安装(上海)有限公司

服务范围:

为无尘(洁净)室提供半导体设备,精密仪器设备,SMT/MOCVD 设备,TFT-LCD 自动化设备,AM-OLED/LTPS及光伏,实验室,光电及机电设备,光学仪器,液晶等离子,工厂企业,集成电路,机器人产线,自动化轨道等客户提供搬运,悬浮气垫平移,搬移,高空吊装,安装服务,move in(out) 特殊装卸装箱掏柜,定位,相关木箱制作及恒温恒湿防震气垫车综合运输服务。

特色服务: 在高端电镜;冷冻电镜,球差电镜,扫描电镜,透射电镜及扫描电子显微镜,聚焦离子束显微镜,在X射线,核磁共振屏蔽,XRD防护室建设,实验室设备搬运,安装,运输,拆装,组合,移位,调试装机,消音消磁,除震消噪及精密仪器的防(减)震台安装,制作均有一套成熟的方案及作业团队。

选择亚瑟:

1、卸车吊装(吊挂):叉车(3.5T-28T及专用掏箱卸车工具)设备高空吊装吊车(35T-500T专用进口吊带卸扣及吊装杆)

2、移入移出搬运(move in):洁净(无尘及高架地面)室专用PE膜,PVC板,pp板,不锈钢钢板及专用白钢搬运车

3、出口木箱及国内标准木箱制作捆包:(免熏蒸夹板(实木),防(减)震木底,防湿防潮,抽真空及铝箔袋包装)

4、施工搬运工具:大小型吊装专用平台(吊笼),防静电304不锈钢钢板,无尘室专用悬浮气垫及各种气浮设备和专用工具

5、综合运输:拥有专业运输精密仪器设备及半导体设备的全进口(恒温恒湿)减(防)震气垫车运输及清关服务。

6.安全保障:公司拥有ISO9001质量管理体系认证,OHSAS18000职业健康安全管理认证及SA8000社会责任管理体系认证

VIP:400-081-0031 E-mail:Arthur@ArthurChina.com www.arthurchina.com

在人类 科技 发展的历程中,每一种新材料的发现,都把人类支配自然的能力提升到一个新的高度,追溯 历史 的长河,无论哪个时期,哪个国家,只要拥有了先进的材料基础,就会引领世界的发展方向。

七十多年前,美国物理学家费曼提出了一个伟大的构想:

“如果有一天,可以按人的意志排列一个个原子,将会产生怎样的奇迹?”

费曼不愧为最伟大的量子力学大师,因为他知道在微观粒子尺度上,物质的物理、化学和生物学特性都会和宏观尺度下的原物质大相径庭。因此,若能重建物质的原子排列方式,就能彻底改变物质的属性,这将对未来的 科技 、工程和医学等领域产生极为深远的影响。

01

碳是一种非常神奇的元素, 它既有一定的金属性(原子失去电子的能力),也有一定的非金属性(原子得到电子的能力),但两种属性都不强,所以碳元素具有“模棱两可”的状态。

这种中性的原子状态,消除了碳原子的化学极性。失去了极性,就有了更多的可能:

碳不是地球上含量最多的元素(排名第十二),但其拥有的化合物种类却是所有元素中最丰富的。

因而地球上绝大多数的重要化合物,都离不开碳的身影,比如 氨基酸 就是以碳元素为基础的碳链,DNA的基本组成单位 脱氧核苷酸 ,也是长长的碳链,所有地球生命都可以叫做碳基生命。

在日常生活中,我们也会常常接触到许多含碳的物质,从较软的石墨到最硬的钻石,尽管组成物质都是碳元素,但是由于 碳原子排列方式 不同,它们展现出的 材质特性 也完全不同。

钻石的产量和价格决定了它并不能走入寻常百姓家。而科学家在分离石墨时发现,它们的碳原子会紧密连接而成二维蜂窝状晶格结构,科学家将这种碳原子结构称为 石墨烯 ,其具有一大堆的神奇特性:

比如发生破损时,只需要用含有碳原子的物质接触,它就能进行自我修复;有超高的透光率,看起来几乎就是透明的;有极高的力学、导电和导热的性能等等。

所有这些优异的特性,都让科学家们垂涎欲滴, 可是即便我们完全清楚这种材料的特性——在微观尺度上有着不同寻常的结构,但想要把它们制造出来,却是一件非常困难的事情。

简单说来,若能从石墨片表面撕下1个碳原子那么厚的薄薄一层,我们就获得了石墨烯。

可是,即便科学家们想尽了各种办法,其中包括氧化还原法、取向附生法、化学气相沉积法等等。但这些方法制造出来的石墨烯,要么是不够均匀,要么就是成本过于高昂。

直到2004 年 ,英国科学家 安德烈·盖姆 康斯坦丁·诺沃瑟洛夫 发明了一种非常简单的方法——“机械剥离法”:

就是从高定向热解石墨中剥离出石墨片,然后将石墨片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地重复这样的 *** 作,石墨片越来越薄,最后,再用溶液把胶带溶解掉,得到仅由一层碳原子构成的薄片,这就是石墨烯。

凭借这种简单有效的“撕胶带”方法,两位科学家获得了2010年度的诺贝尔物理学奖

但是,这种制取石墨烯的方法依然有缺陷:

理论上使用胶带总是可以把石墨一分为二,可是胶带上的胶也并不总是均匀的,这会导致石墨烯的完整性被破坏,所以这种方法制取的石墨烯通常都是几微米大小的碎片。

看来人类若想在微观状态下获取新型材料,此时仅仅是看到了一丝曙光而已……

不过,值得庆幸的是,如今有一种加工精度已到纳米级的(1原子约为0.1纳米)技术—— “光刻”, 已经发展得非常成熟可靠:

这种方法是将半导体硅材料在 紫外光 的照射作用下,利用 光学 化学反应 化学 物理刻蚀 的方法,将细微到纳米级的电路图复刻到硅单晶表面。

经过光刻加工的硅芯片也可以算作是一种特殊材料,因为通过加工精度细微到纳米级的微观结构,可以使硅芯片在通电后可以具备传递、计算和存储等神奇的功能(需要软件的配合)。

但目前有一个难点是,当硅芯片的加工精度突破5纳米后,便已经到达它的物理极限——引发电子的隧穿效应,此时的芯片便会不受控制地产生漏电现象,导致芯片的功耗明显增加。

因此, 除了撕胶带法和光刻技术,我们还需要寻找另外一种制造具备神奇特性新材料的方向

比如直接 *** 纵原子得到所需的新结构材质。”

02

实际上,我们对单个原子的 *** 纵早就实现了。1989年9月28日,IBM阿尔马登研究中心的物理科学家、IBM院士 多恩·艾格勒 成为人类 历史 上第一个控制和移动单个原子的人。

当年11月11日, 艾格勒 和他的团队用扫描隧道显微镜 *** 控35个氙原子,拼写出了“I、B、M”三个字母,由此开启了人类 *** 纵原子的新纪元。

扫描隧道显微镜发明于1981年,作为一种扫描探针显微术(分辨率为纳米级)工具,它其实是没有镜片的,靠的是一个针尖和样品之间的隧道电流来测量样品表面。它可以观察和定位单个原子。此外,扫描隧道显微镜的最大贡献是:

在4K(-269.15 )低温的超高真空下可以利用探针尖端精确 *** 纵单个原子:

利用导电探针尖与样品表面的隧穿电流,为探针尖端原子和衬底原子提供可控的相互作用力。

可是,扫描隧道显微镜所观察的材料必须具有一定程度的 导电性 ,这便决定了它的局限性:

“对半导体材料的观测效果要差于导体,而对于绝缘体则根本无法直接观察。”

1985年,物理学家格尔德·宾宁又“魔力上身”,联合IBM公司苏黎世研究中心的 克里斯托夫·格贝尔、斯坦福大学的加尔文·奎特共同 发明出了一种使非导体也可以采用类似扫描探针显微镜观测的机器——原子力显微镜。

这是一种可用来研究包括绝缘体在内的材料表面结构的分析仪器,属于一种接触式的显微镜,它利用探针与样品间的接触力,得到样品的表面形貌。原子力显微镜同样具有诸多优点:

“可以提供真正的三维表面图;不需要对样品作任何特殊处理,在常压下甚至在液体环境下都可以良好工作;可以用来研究生物宏观分子,甚至是活的生物组织。”

那么,把二者相互结合在一起便会产生大于1+1 2的效果,2017年2月13日,IBM的科学家们用扫描隧道显微镜结合原子力显微镜突破了一项重大科研成果:

他们用扫描隧道显微镜的针尖手工“敲打”原子,首次成功合成并捕捉到能稳定存在4天之久的三角烯分子。

长期以来,科学家们一直认为三角烯分子根本无法以晶体形式合成,因为它们会不受控制地聚合。

三角烯是一种由六边形 碳原子 环状构成的分子材料,与石墨烯极为相似,不过和成片状展开的石墨烯不同,三角烯中仅含六个六边形碳环,并呈现出类似于三角形的形状。

由于这种不寻常的排列方式会产生两个不成对的电子,使得三角烯极易被氧化,难以稳定存在。所以三角烯分子自1950年被捷克科学家埃里希·克拉尔首次预测以来,一直未能被人工合成。

因此,为了验证实验是否成功,IBM团队成员对生成物的形状、对称性、磁性等特性进行研究。结果发现,生成物确实呈现出三角形结构,而且能在铜表面稳定存在。另外两个未配对的电子也表现出一种特别的电子自旋现象,使得三角烯在分子水平上呈现出磁性。

那么,自从石墨烯面世后,研究者普遍认为石墨烯是一种抗磁材料——即 石墨烯没有磁性 以及不能被磁化。现在碳原子呈三角烯结构竟然具有非常独特的 磁性性能 。这无疑颠覆了人们的固有认知,甚至可以带动一个改写 历史 的领域兴起——碳基磁性材料的时代来临:

“这意味着碳原子的三角烯结构可以用来构建量子计算机及自旋电子器件等。并且 这一 *** 作结果可进一步带来更多颠覆性的技术,最终目标便是能够制造任意的分子结构。”

03

当然, *** 纵原子这一设想不能只有一种方法,1970年,美国物理学家亚瑟·阿什金发现:

“激光束产生的力可以推动分布在水或者空气中的微小粒子,并且散射的激光也会对微粒产生明显的推力。”

1986年, 阿什金 做了一个实验:

他用一束聚焦的激光来照射粒子,激光的散射光与激光本身组成了一个陷阱,像镊子一样把粒子固定住了,这就是著名的 光镊 ,阿什金也因此被称为“光镊之父”。

在观看了这个实验后,阿什金在贝尔实验室的同事,华裔科学家 朱棣文 大受启发,他立即投入了相关的研究。

朱棣文发现,激光的压力可以让高速运动的原子和分子减速,并且让它们冷却下来。他用来自不同方向的多束激光,把原子控制住。1997年,朱棣文幸运地凭借着激光冷却和捕获原子的方法,先于阿什金获得了诺贝尔物理学奖,成为第五位获得诺奖的华裔科学家。

一直到2018年,已经96岁高龄的阿什金,终于等来了他的诺贝尔奖。他发明的光镊,也是目前最有希望参与活体细胞甚至是基因编辑的技术原理:

“”光镊可以非接触、无损伤地 *** 纵活体物质,并且它产生的压力适合于生物细胞、亚细胞以及原子物理的研究。”

每当我们认为科学的发展已经到了瓶颈的时候,这些可爱的科学家们总会让我们看到新的希望。未来可期!

#2021生机大会#

北京时间10月5日下午5点50分许,瑞典皇家科学院决定将2021年的诺贝尔物理学奖授予日本籍科学家 Syukuro Manabe 、德国科学家 Klaus Hasselmann 和意大利科学家 Giorgio Parisi ,以表彰他们“ 对我们理解复杂物理系统的开创性贡献 ”。

2021年的诺贝尔奖单项奖金为1000万瑞典克朗 (约合736万元人民币) 。

过去6年诺贝尔物理学奖得主名单

2020年,诺贝尔物理学奖将一半颁给了罗杰·彭罗斯 (Roger Penrose)以表彰其给出的 黑洞形成的证明,并成为广义相对论的有力证据。 另一半由赖因哈德·根策尔 (Reinhard Genzel)、安德烈娅·盖兹 (Andrea Ghez)共享,表彰他们在 银河系中心发现超高质量高密度物质。

2019年,美国普林斯顿大学教授吉姆·皮布尔斯(James Peebles)、瑞士日内瓦大学教授米歇尔·麦耶(Michel Mayor)和日内瓦大学教授迪迪埃·奎洛兹(Didier Queloz)获奖, 理由是“他们在天体物理学方面的发现”。

2018年,美国科学家亚瑟·阿斯金(Arthur Ashkin)、法国科学家杰哈·莫罗(Gerard Mourou)和加拿大科学家唐娜·斯特里克兰(Donna Strickland)获奖, 理由是“在激光物理领域的突破性发明”。

2017年,三名美国科学家雷纳·韦斯、基普·索恩和巴里·巴里什获奖,理由是“ 在LIGO探测器和引力波观测方面的决定性贡献 ”。

2016年,三位英美科学家大卫·索利斯、邓肯·霍尔丹、迈克尔·科斯特利茨获奖,理由是 “理论发现拓扑相变和拓扑相物质”

关于诺贝尔物理学奖的小知识

作为根据诺贝尔遗嘱设立的五大奖项之一, 物理学奖被授予“在物理学领域作出最重要发现或发明的人” ,与其他诺贝尔奖相比,物理学奖的荐举和甄选过程更长、更缜密。诺贝尔物理学奖规则规定,获奖者的贡献必须“已经受时间的考验”。这意味着诺贝尔委员会 往往会在科学发现的数十年以后才会为此颁发奖项。 自1901年设立至今,诺贝尔物理学奖已走过百年历程,记录了物理学发展史上的无数个里程碑,已成为人类文明不可分割的一部分。

根据规定,一项诺贝尔奖 最多可以颁给两项不同的成就,奖金将均分。 而如果一项成就是由2到3个人共同完成,那么奖金将联合授予他们。一份奖金最多由3人分享。

自1901年至2020年,诺贝尔物理学奖项已颁发114次,其中,1916年、1931年、1934年、1940年、1941年和1942年这6年未颁奖。正如组委会所说:“如果候选人的贡献没有达到要求,那么奖金就会被保留至第二年。如果第二年仍没有合适的人选,那么,奖金将回流至基金会的初始基金里。”此外,在两次世界大战期间,诺贝尔奖也鲜少颁发。

俗话说,出名要趁早。迄今为止,诺贝尔物理学奖最年轻的获奖者是 劳伦斯·布拉格 。1915年, 年仅25岁 的他凭借用X射线研究晶体内原子和分子结构的贡献,与父亲亨利·布拉格共同获得诺贝尔物理学奖。

迄今,诺贝尔物理学奖最年长的获奖者是 亚瑟·阿什金 ,他在2018年获得诺贝尔奖时已经 96岁 。获奖理由是“在激光物理领域的突破性发明”。

在诺贝尔奖 历史 上,获得两次诺贝尔物理学奖的是美国物理学家 约翰·巴丁 。1956年约翰·巴丁因对半导体的研究和对晶体管效应的研究荣获诺贝尔物理学奖。1972年他因超低温理论再次荣获诺贝尔物理学奖。

复杂系统的特点是随机性和无序性,难以理解。今年的奖项表彰描述它们和预测它们长期行为的新方法。

地球气候是一个对人类至关重要的复杂系统。真锅淑郎展示了大气中二氧化碳含量的增加如何导致地球表面温度升高。在1960年代,他领导了地球气候物理模型的开发,并且是第一个 探索 辐射平衡与气团垂直输送之间相互作用的人。他的工作为当前气候模型的发展奠定了基础。

大约十年后,克劳斯·哈塞尔曼创建了一个将天气和气候联系在一起的模型,从而回答了为什么气候模型在天气多变且混乱的情况下仍然可靠的问题。他还开发了识别特定信号、指纹的方法,自然现象和人类活动都在气候中留下印记。他的方法已被用来证明大气温度升高是由于人类排放的二氧化碳。

1980年左右,乔治·帕里西在无序的复杂材料中发现了隐藏的模式。他的发现是对复杂系统理论最重要的贡献之一。它们使理解和描述许多不同的、显然完全随机的材料和现象成为可能,不仅在物理学中,而且在其他非常不同的领域,如数学、生物学、神经科学和机器学习。

“今年获得认可的发现表明,我们对气候的了解建立在坚实的科学基础之上,基于对观测的严格分析。 今年的获奖者都为我们更深入地了解复杂物理系统的特性和演化做出了贡献 。 ”诺贝尔物理学委员会主席托尔斯·汉斯·汉森说。

为复杂世界寻找最简科学规律

乔治·帕里西摘得诺奖并不意外。实际上这位科学家学术主页现实的引用次数已经超过 9万 此前他斩获了除诺奖之外的几乎所有科学奖项中的物理学奖 。“帕里西是非常有影响力的理论物理学家,他通过统计物理和复杂系统的方法开展研究”, 上海交通大学自然科学研究院和物理与天文学院教授张何朋 解释,“一般晶体中的原子按照周期性结构排列,但很多复杂系统没有这种晶体中的空间序、且处在随机性很强的热力学非平衡态,这使得一些传统的物理研究方法难以在复杂系统中奏效,但帕里西发展了很多方法研究无序、随机的复杂系统。”

今年帕里西还获得沃尔夫奖,颁奖词这样评价:“他的工作对物理学不同分支有极大的影响,包括粒子物理、临界现象、无序系统、以及优化理论和数学物理。” 张何朋认为,复杂系统的研究进展需要多学科的融合和交叉;随着大数据、计算能力等方面的发展,这一领域也将迎来快速推进,帮助科学家 探索 出更好地探究真实世界的新研究范式。

值得注意的是,帕里西的研究非常有趣,有些超出了传统物理研究的范畴,比如纸张燃烧后不规则的边界、和谐飞舞的鸟群等。“这些起源于生物学和材料学的问题至今还未有完整的解答,物理学家积极介入这些交叉研究,试图为复杂问题寻找到最简单、最普适的模型和机制,帮助人类更好地认识世界”,张何朋说,而目前, 这些领域也有中国科研团队在努力

诺贝尔物理学每年评选和颁发一次,其中有 6 年因故停发(1916年、1931年、1934年、1940-1942年)。截至2020年,诺贝尔物理学奖共颁发 114 次,共有 215 人获得该奖。美国物理学家 约翰·巴丁 ,因晶体管效应和超导的BCS理论在1956年和1972年两度获奖,是唯一一位“梅开二度”的科学家。

2020年,诺贝尔物理学奖的一半由 罗杰·彭罗斯 获得,另一半由 莱因哈德·根泽尔 安德里亚·格兹 共同获得。三位科学家因 发现了银河系中心的超大质量致密天体 而获奖。咖啡师也从世界顶尖科学家论坛(WLF)获悉,莱因哈德·根泽尔已经应邀出席11月初召开的第四届世界顶尖科学家论坛,并在大师讲堂上分享自己的黑洞研究。

数据显示:诺贝尔物理学奖仅授予1人的,出现了 47 次;授予两人的,共出现了 32 次;授予三人的,出现了 35 次。近年来,两人或者三人获奖的频率大大增加,上一次独享诺贝尔物理学奖的物理学家还要追溯到1992年获奖的乔治·夏帕克。

迄今为止,最年轻的诺贝尔物理学奖获得者是威廉·劳伦斯·布拉格,获奖时是 25 岁。1915年,他和他的父亲威廉·亨利·布拉格同时获奖;2018年,亚瑟·阿斯金以 96 岁高龄获奖,是诺贝尔物理学奖得主中的最年长者。

统计表明:诺贝尔物理学奖得主中,20-29岁的仅1人;30-39岁的有23人;40-49岁的获奖人数最多,达到了55人;50-59岁也是获得诺贝尔物理学奖的“高峰期”,有52人;60-69岁有43人;70-79岁有26人;80-89岁出现了15位获奖者;而90-99岁同样仅1人。

历史 上曾有 4 名女性获得诺贝尔物理学奖,分别是我们熟知的“居里夫人” 玛丽·居里 、德裔美国物理学家 玛丽亚格佩特·梅耶 、2018年的得主 唐娜·斯特里克兰 和去年的得主 安德里亚·格兹 。其中,玛丽·居里两度获得诺奖。1903年,居里夫妇和贝克勒尔由于对放射性的研究而共同获得诺贝尔物理学奖。1911年,居里夫人因发现元素钋和镭再次获得诺贝尔化学奖,成为世界上第一个两获诺贝尔奖的人。

有学者表示,相较其它自然科学奖项,诺贝尔物理学奖的规律性较为明显:宇宙天体物理学、粒子物理学、原子分子及光物理学和凝聚态物理学这四大领域轮番登场。不过近几年,天体物理登台频率较高——2015年是粒子物理成果获奖;


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8890264.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-22
下一篇 2023-04-22

发表评论

登录后才能评论

评论列表(0条)

保存